نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی آب، دانشکده مهندسی زارعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

2 دانشیار گروه مهندسی آب، دانشکده مهندسی زارعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

3 استاد، گروه مهندسی آبیاری و آبادانی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

4 دانشجوی دکتری گروه مهندسی آبیاری و آبادانی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

چکیده

با توجه به خشک‌سالی، امنیت آبی و غذایی کشور با چالش­هایی سخت روبه رو است و احیای آن نیازمند برنامه­ریزی دقیق اجرایی و استفاده از دانش علمی و فناوری­های روز مانند سامانه‌های نوین آبیاری به‌عنوان ابزاری کارا برای مصرف بهینه آب می­باشد. بر همین اساس، این پژوهش با هدف بررسی عملکرد، اجزای عملکرد و بهره‌وری آب برنج رقم هوندا در دو سامانه آبیاری قطره‌ای سطحی و زیرسطحی در مزرعه شالیزاری واقع در کیاسر در استان مازندران در بهار و تابستان سال 1401 انجام شد. این آزمایش به صورت کرت­های خردشده نواری در قالب طرح بلوک­های کامل تصادفی با شش تیمار در سه تکرار در 18 کرت به ابعاد دو در سه متر انجام شد. تیمارها شامل آبیاری قطره‌ای نواری سطحی با فاصله نوار 25، 50 و 75 سانتی‌متر و آبیاری قطره­ای زیرسطحی در عمق 30 سانتی­متری از سطح خاک و با همان فواصل نوار. نتایج نشان داد که طول خوشه، تعداد پنجه، ارتفاع بوته و طول ریشه در تیمارهای آبیاری نواری سطحی به­ترتیب 1/2 سانتی­متر (6/8%)، 8/19 (49/8%)، 6/9 سانتی­متر (8/2%) و 1 سانتی‌متر (6/9%) نسبت به تیمارهای آبیاری قطره­ای زیرسطحی افزایش معنی­ دار داشت. عملکرد دانه، شاخص برداشت، بهره­ وری فیزیکی و به ره­وری اقتصادی در تیمارهای آبیاری نواری سطحی به­ترتیب 1664 کیلوگرم در هکتار (40/8%)، 4/7% (14/1%)، 0/27 کیلوگرم بر مترمکعب (38/5%) و242363 ریال بر مترمکعب (38/4%) نسبت به تیمارهای آبیاری قطره­ای زیرسطحی افزایش معنی­دار داشت. حداکثر عملکرد دانه و شاخص برداشت برابر5834 کیلوگرم در هکتار و40% در فاصله نوار 25 سانتی­متر مشاهده شد. حداکثر بهره­وری فیزیکی برابر 0/93 کیلوگرم بر مترمکعب در فاصله نوار 50 سانتی­متر مشاهده شد. با افزایش فاصله نوار از 25 سانتی­متر به 50 سانتی­متر، بهره­وری فیزیکی 22% افزایش یافت. سپس با فاصله گرفتن بیشتر از نوار، مقدار بهره­وری فیزیکی کاهش یافت. حداکثر بهره­وری اقتصادی نیز برابر836951 ریال بر مترمکعب در فاصله نوار سطحی 50 سانتی­متر مشاهده شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of Surface and Subsurface Drip Irrigation Systems on Yield, Yield Components, and Water Productivity of Rice

نویسندگان [English]

  • Razieh Bayani 1
  • Mojtaba Khoshravesh 2
  • Abdolmajid Liaghat 3
  • Masoud Pourgholam-Amiji 4

1 MS.c. Student, Department of Water Engineering, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.

2 Associate Professor, Department of Water Engineering, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.

3 Professor, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

4 Ph.D. Candidate, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

چکیده [English]

Due to the drought, water and food security in the country is facing serious challenges, and a precise and science-based implementation plan is needed. The use of new technologies, such as modern irrigation systems, is essential as an effective tool for optimal water use. Therefore, this study was conducted to investigate the yield, yield components, and water efficiency of rice variety "Honda" in two surface and subsurface drip irrigation systems in a paddy field located in Kiasar, Mazandaran Province, Iran, during the spring and summer of 2022. The experimental design was strip plots using a randomized complete block design with 6 treatments and 3 replications in 18 plots measuring 2 by 3 m. The treatments included surface drip irrigation with strip distances of 25, 50, and 75 cm, and subsurface drip irrigation at a depth of 30 cm with the same strip distances. The results showed that cluster length, number of grains, plant height, and root length were significantly increased in surface drip irrigation treatments compared to subsurface treatments, with an increase of 1.2 cm (6.8%), 8.19 (49.8%), 6.9 cm (8.2%), and 1 centimeters (6.9%), respectively. The grain yield, harvest index, physical efficiency, and economic efficiency in the surface drip irrigation treatments showed significant increases of 1664 kg/ha (40.8%), 4.7% (14.1%), 0.27 kg/m3 (38.5%), and 242,363 Rials/m3 (38.4%), respectively, compared to subsurface drip irrigation treatments. The maximum grain yield and harvest index were observed at distances of 25 cm, equal to 5834 kg/ha and 40%, respectively. The maximum physical efficiency was observed at a distance of 50 cm, equal to 0.93 kg/m3. With an increase in distance between the strips from 25 to 50 cm, the physical efficiency increased by 22%. However, further increase in the distance led to a decrease in physical efficiency. The maximum economic efficiency was observed for surface drip irrigation at a distance of 50 cm, equal to 836,951 Rials/m3.

کلیدواژه‌ها [English]

  • Improving water productivity
  • Modern irrigation methods
  • Rice variety Honda
  1. آمارنامه کشاورزی. (1400). آمارنامه کشاورزی (سال زراعی 99-1398) جلد اول: محصولات زراعی. چاپ اول، وزارت جهاد کشاورزی، معاونت برنامه‌ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات، 97 ص.
  2. دهقانیان، ا. (1394). آبیاری قطره­ای نواری در زراعت برنج. نشریه فنی. شورای انتشارات مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، 3، 8-1.
  3. رحیمی پول، م.، اکبری نودهی، د.، اسدی، ر.، باقری، ع. و شیردل شهمیری، ف. (1400). تأثیر آبیاری قطره‌ای و غرقابی بر عملکرد و بهره‌وری آب در دو روش کشت برنج در مازندران. پژوهش آب در کشاورزی، 35(4)، 404-391.
  4. رمضانی، ا. و دهقانی، م. (1400). کاربرد آبیاری قطره­ای نواری در خشکه­کاری برنج (مطالعه موردی: لنجان اصفهان). پژوهش آب ایران، 15(2)، 119-127.
  5. شمسعلی، ل.، بیابانی، ع.، قربانی واقعی، ح. و طلیعی، ف. (1397). بررسی اثر تاریخ کاشت و سامانه آبیاری بر برخی ویژگی‌های زراعی برنج در گنبدکاووس. مدریت آب و آبیاری 1(8)، 27-38.
  6. علیزاده، ا. (1389). آبیاری قطره­ای (اصول و عملیات). انتشارات دانشگاه امام رضا، چاپ دوم، 494 صفحه.
  7. فیروزپور بندپی، ر.، شاهنظری، ع.، اکبرزاده، ع. و یوسفیان، م. (1401). بررسی تأثیر روش‌های کم‌آبیاری بر عملکرد، آب مصرفی و اجزای عملکرد برنج (رقم بینام). مدیریت آب و آبیاری، 12(3)، 481-467.
  8. قلی‌نژاد بهنمیری، ق.، غلامی سفیدکوهی، م. ع. و موسوی، س. ی. (1399). اثرات آبیاری موضعی نواری بر بهره‌وری فیزیکی و اقتصادی آب در اراضی شالی‌زاری شهرستان ساری. تحقیقات آب‌وخاک ایران، 51(12)، 3134-3127.
  9. یوسفیان، م.، عربزاده، ب.، سودایی مشایی، ص.، محمدی نشلی، ی. (1393). بررسی اثرات سطوح مختلف آبیاری بر عملکرد، خواص کمی و کیفی دانه دو رقم برنج (طارم و شیرودی). پژوهش­های کاربردی زراعی، 27(104)، 75-69.
  10. Arbat, G., Parals, S., Duran-Ros, M., Pujol, J., Puig-Bargués, J., & Ramírez de Cartagena, F. (2018). Dinámica del agua en el suelo, productividad del agua y economía en riego por inundación y goteo en arroz. In XXXVI Congreso Nacional de Riegos, AERYD: Valladolid, Spain (Vol. 19, pp. 1-10).
  11. Aydinsakir, K., Dinc, N., Buyuktas, D., Kocaturk, M., Ozkan, C. F., & Karaca, C. (2021). Water productivity of soybeans under regulated surface and subsurface drip irrigation conditions. Irrigation Science, 39(6), 773-787.
  12. Bajpai, A., & Kaushal, A. (2021). Drip Irrigation in Rice and Wheat Cropping System under Conservation Agriculture: Water Scarcity Solution.‏ Biological Forum – An International Journal, 13(3b), 89-93.
  13. Bouman, B. A. M., Yang, X., Wang, H., Wang, Z., Zhao, J., & Chen, B. (2006). Performance of aerobic rice varieties under irrigated conditions in North China. Field Crops Research, 97(1), 53-65.
  14. Bozkurt Çolak, Y. (2021). Comparison of aerobic rice cultivation using drip systems with conventional flooding. The Journal of Agricultural Science, 159(7-8), 544-556.
  15. Bozkurt Çolak, Y. (2021). Comparison of aerobic rice cultivation using drip systems with conventional flooding. The Journal of Agricultural Science, 159(7-8), 544-556.
  16. Food and Agriculture Organization of the United Nations. (2020). FAOSTAT–Food and Agriculture Data. Available online: http://www.fao.org/faostat/en/#data (accessed on 5 May 2020).
  17. Foroumandi, E., Nourani, V., Huang, J. J., & Moradkhani, H. (2023). Drought monitoring by downscaling GRACE-derived terrestrial water storage anomalies: A deep learning approach. Journal of Hydrology, 616, 128838.
  18. He, H., Ma, F., Yang, R., Chen, L., Jia, B., Cui, J., & Li, L. (2013). Rice performance and water use efficiency under plastic mulching with drip irrigation. PLoS One, 8(12), e83103.
  19. Ilahi, W. F. F., Ya, N. N. C., Razali, M. F. A., & Hassan, N. H. A. (2020). Impacts of fertigation via surface and subsurface drip irrigation on growth rate of rockmelon. Advances in Agricultural and Food Research Journal, 1(2), 1-8.
  20. IRRI (International Rice Research Institute). (2005). Changes in rice farming in selected areas of Asia. Los Banos, Philippines.
  21. Kijne, J. W., Tuong, T. P., Bennett, J., Bouman, B., & Oweis, T. (2003). Ensuring food security via improvement in crop water productivity. Challenge Program on water and Food Background Paper, 1, 20-26.
  22. Ladi, T., Mahmoudpour, A. & Sharifi, A. (2021). Assessing impacts of the water poverty index components on the human development index in Iran. Habitat International, 113, 102375.
  23. Maclean, J., Hardy, B., & Hettel, G. (2013). Rice Almanac: Source book for one of the most important economic activities on earth. IRRI.
  24. Maraseni, T. N., Deo, R. C., Qu, J., Gentle, P., & Neupane, P. R. (2018). An international comparison of rice consumption behaviours and greenhouse gas emissions from rice production. Journal of Cleaner Production, 172, 2288-2300.
  25. Parthasarathi, T., Vanitha, K., Mohandass, S. & Vered, E. (2018). Evaluation of Drip Irrigation System for Water Productivity and Yield of Rice. Agronomy Journal, 110(6), 2378-2389.
  26. Pourgholam-Amiji, M., Liaghat, A., Ghameshlou, A. N. & Khoshravesh, M. (2021). The evaluation of DRAINMOD-S and AquaCrop models for simulating the salt concentration in soil profiles in areas with a saline and shallow water table. Journal of Hydrology, 598, 126259.
  27. Radhika, V., Srinivasan, K., Ramya, R. & Sharmila, B. B. (2022). IoT-Based Water Quality and Quantity Monitoring System for Domestic Usage. In Immersive Technology in Smart Cities (pp. 205-227). Springer, Cham.
  28. Raper, R. L., Asmussen, L. E., & Powell, J. B. (1990). Sensing hard pan depth with ground-penetrating radar. Transactions of the ASAE, 33(1), 41-0046.
  29. Samoy-Pascual, K., Lampayan, R. M., Remocal, A. T., Orge, R. F., Tokida, T., & Mizoguchi, M. (2022). Optimizing the lateral dripline spacing of drip-irrigated aerobic rice to increase water productivity and profitability under the water-limited condition. Field Crops Research, 287, 108669.‏
  30. Singh, K., Singh, P., Singh, M., Mishra, S. K., Iqbal, R. R., Al-Ashkar, I., ... & El Sabagh, A. (2022). Sub-surface drip fertigation improves seed cotton yield and monetary returns. Frontiers in Plant Science, 13, 1-18.
  31. Soman, P. (2021). Drip Irrigation and Fertigation Technology for Rice Production Leading to Higher Water Productivity.‏‏ International Journal of Water Resources and Arid Environments, 10(2), 70-77, 2021.
  32. Stafford, J. V., & Hendrick, J. G. (1988). Dynamic sensing of soil pans. Transactions of the ASAE, 31(1), 9-0013.
  33. Unkovich, M., Baldock, J., & Forbes, M. (2010). Variability in harvest index of grain crops and potential significance for carbon accounting: examples from Australian agriculture. Advances in agronomy, 105, 173-219.