تأثیر تنش خشکی و شوری بر عملکرد، ویژگی‌های بیوشیمیایی و فعالیت آنزیم‌های آنتی‌اکسیدانی سورگوم علوفه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری زراعت، دانشکده کشاورزی و منابع طبیعی، واحد فیروزآباد، دانشگاه آزاد اسلامی، فیروزآباد، ایران.

2 دانشیار دانشکده کشاورزی ، واحد شیراز، دانشگاه آزاد اسلامی

3 استادیار دانشکده کشاورزی و منابع طبیعی، واحد فیروزآباد، دانشگاه آزاد اسلامی، فیروزآباد، ایران.

4 استادیار مرکز ملی تحقیقات شوری، سازمان تحقیقات،آموزشو وترویج کشاورزی، یزد، ایران

5 دانشیار دانشکده کشاورزی و منابع طبیعی، واحد فیروزآباد، دانشگاه آزاد اسلامی، فیروزآباد، ایران.

چکیده

در مطالعه حاضر، تأثیر سطوح مختلف تنش­ های خشکی و شوری بر تولید ماده خشک، ویژگی­های بیوشیمیایی و فعالیت آنتی ­اکسیدانی سورگوم Sorghum bicolor (L.) Moench]­­[ رقم علوفه­ای پگاه در دو منطقه مرودشت و ارسنجان در سال 1396 بررسی شد. تیمارها شامل چهار سطح تنش خشکی 100%، 85%، 70% و 55 % ظرفیت مزرعه در کرت ­های اصلی و چهار سطح شوری آب آبیاری 1/5، 4/5، 7/5 و 10/5 دسی ­زیمنس در متر در کرت­ های فرعی بود که در یک آزمایش کرت­ های خردشده در قالب طرح بلوک ­های کامل تصادفی با سه تکرار اجرا شد. نتایج نشان داد که تنش­ های خشکی و شوری در هر دو منطقه با کاهش تولید ماده خشک و غلظت کلروفیل­ های a و b و کاروتنوئیدها همراه بود، ولی بسته به شدت تنش، غلظت پرولین آزاد‌ و فعالیت آنزیم ­های کاتالاز، پراکسیداز و سوپراکسید دیسموتاز را افزایش داد.  فعالیت آنزیم آسکوربیک پراکسیداز تنها تحت تأثیر تنش خشکی افزایش یافت. بیش‌ترین ماده خشک تولیدی از تیمار آبیاری 100% ظرفیت مزرعه با شوری 4/5 دسی­ زیمنس در متر برابر با 1/292 و 1/198 کیلوگرم در مترمربع به­ترتیب در مرودشت و ارسنجان به­دست آمد. عدم تأثیر معنی­دار رژیم آبیاری 85% ظرفیت مزرعه بر ماده خشک و ویژگی­ های بیوشیمیایی سورگوم نشان داد که تنها رژیم­ های آبیاری 70% و 55% ظرفیت مزرعه منجر به تنش آبی در سورگوم ­گردید. از دیگرسو، تفاوت معنی­داری بین شرایط غیرشور و 4/5 دسی­زیمنس در متر مشاهده نشد؛ که بیانگر تحمل به شوری سورگوم حداقل تا این سطح شوری است. نتایج این تحقیق نشان داد که به‌خاطر خاصیت هم ­افزایی، وجود هم‌زمان تنش ­های خشکی و شوری اثر سوء بیشتری بر کاهش عملکرد گیاه داشت. بنابراین، در شرایط استفاده از آب با شوری­ 7/5 دسی­زیمنس در متر و بالاتر برای آبیاری سورگوم، استراتژی ­های کم آبیاری توصیه نمی‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Drought and Salinity Stress on Yield, Biochemical Properties, and Activity of Antioxidant Enzymes in Forage Sorghum

نویسندگان [English]

  • alireza emadi 1
  • omid alizadeh 2
  • bahram amiri 3
  • Hadi Pirasteh-Anosheh 4
  • mehdi zare 5
1 Ph. D. Student of Agronomy, Department of Agriculture, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran,
2 Department of Agriculture, Islamic Azad University, Shiraz Branch, Shiraz, Iran,
3 Department of Agronomy, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran
4 National Salinity Research Center, Agricultural Research, Education and Extension Organization, Yazd, 8917357676, Iran,
5 Department of Agronomy, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran, mahdi.zare2009@gmail.com
چکیده [English]

In the present study, the effect of different levels of water and salinity stresses was investigated on dry matter production, biochemical attributes, and activity of antioxidant enzymes in sorghum [Sorghum bicolor (L.) Moench] in Marvdasht and Arsanjan regions in 2017. The treatments included four levels of water stress: 100%, 85%, 70%, and 55% of field capacity (FC) in the main plots and four levels of salinity stress: 1.5, 4.5, 7.5 and 10.5 dS m-1 in the sub plots, which were arranged in split plots based on randomized complete block design, with three replications. The results showed that water and salinity stresses in both regions were associated with decreased dry matter production and concentrations of chlorophylls a and b and carotenoids, while the concentration of free proline and the activity of antioxidant enzymes catalase, peroxidase and superoxide dismutase were increased depending on the stress level. Ascorbic peroxidase activity was increased only under water stress. The highest dry matter yields were obtained from 100% FC irrigation with 4.5 dS m-1 salinity and were 1.292 and 1.198 kg ha-1 in Marvdasht and Arsanjan, respectively. Non-significant effect in 85% FC irrigation regime showed that only 70% and 55% FC irrigation regimes led to water stress in sorghum. On the other hand, no significant difference was observed between non-saline conditions and 4.5 dS m-1, which indicates salinity tolerance of sorghum, at least up to this level. In both regions, the intensity of changes due to water and salinity stress was correlated with the intensity of that stress. The results of this research showed that due to antagonistic effects, drought and salinity stresses have a greater effect on reducing plant yield; therefore, water deficit irrigation strategies are not recommended in case of using water with salinities of 7.5 dS m-1 and more for sorghum irrigation.

کلیدواژه‌ها [English]

  • Carotenoids
  • Irrigation regime
  • Chlorophyll
  1. افشون ا، مقدم ح، جهانسوز م ر، صوفی زاده س و اویسی م، 1400. ارزیابی اثر خاک‌ورزی، تنش آبی و کود نیتروژن بر کیفیت علوفه ذرت در کرج.علوم گیاهان زراعی ایران، جلد 53، شماره 2، صفحه­های 25 تا
  2. امام ی، 1390. زراعت غلات، چاپ چهارم. انتشارات دانشگاه شیراز.
  3. پیراسته انوشه ه، رنجبر غ وطباطبائی س ع، 1399. اثر تنش شوری بر برخی ویژگی‌های فیزیولوژیک و وزن خشک در کشت مخلوط سورگوم (Sorghum bicolor) وکوشیا (Bassiaindica). خشکبوم، جلد 1، شماره 10، صفحه­های 14 تا 30.
  4. ترابی م، 1394. کشت سورگوم در مناطق خشک و نیمه خشک. مدیریت هماهنگی ترویج کشاورزی استان اصفهان.
  5. خاکسار ک و فومن ع، 1390. دستورالعمل تولید بذر سورگوم دانه ای. موسسه تحقیقات ثبت و گواهی بذر و نهال، کرج.
  6. راهنما ع، آبسالان ش و مکوندی م ا، 1387. اثر کم آبیاری بر عملکرد و اجزای عملکرد سه رقم سورگوم علوفه ای. مجله ی پژوهش در علوم زراعی، جلد 1، شماره 2، صفحه های 11 تا
  7. رنجبر غ و پیرسته انوشه ه، 1394. نگاهی به تحقیقات شوری در ایران؛ با تاکید بر بهبود تولید گیاهان زراعی. مجله علوم زراعی ایران. جلد 17، شماره 2، صفحه های 165 تا
  8. کیخانی ف، گنجی ن، فرزانجو م، کیخا غ، ثقفی ک وکیخا م، 1389. بررسی اثر کم آبیاری بر عملکرد کمی و کارایی مصرف آب محصول سورگوم علوفه­ای در منطقه سیستان. مجله پژوهش آب در کشاورزی. جلد 24، شماره 1، صفحه­های 41 تا
  9. فومن اجیرلو ع، مختارزاده محمدی ع، بهشتی ع، و شیری م، و راهنما ع، نادعلی ف، نورمحمدی س، حسن زاده مقدم ه. 1387. معرفی رقم پگاه، رقم جدید سورگوم علوفه­ای. مجله نهال و بذر، جلد 24، شماره 2، صفحه های 371 تا 367.
  10. مبصر ص، 1390. دستورالعمل ملی آزمون های تمایز، یکنواختی و پایداری در سورگوم. موسسه تحقیقات ثبت و گواهی بذر و نهال، کرج. 28 صفحه.
  11. نجفی نژاد ح، جواهری م ع، کوهی ن و شاکری پ، ١٣٩٨. عملکرد و کیفیت علوفه و بهره وری مصرف آب کوشیا، ارزن، سورگوم و ذرت در شرایط تنش کم آبی. مجله بهزراعی نهال و بذر. جلد 35، شماره 2، صفحه های 261 تا
  12. هاشمی س ا، امام ی و پیراسته انوشه ه، 1397. پاسخ محتوای یونی و فعالیت آنتی‌اکسیدانی جو به روش‌های کاربرد سالیسیلیک اسید در شرایط شور. مجله اکوفیزیولوژی گیاهی. جلد 34، شماره 2، صفحه های 1 تا 1
  13. هدایتی فیروزآبادی ع، کاظمینی س ع و پیراسته انوشه ه، 1396. ارزیابی نسبتهای مختلف کشت مخلوط سورگوم-کوشیا در شرایط متفاوت شوری. مجله تحقیقات مرتع و بیابان ایران، جلد 24، شماره 3، صفحه های 685 تا
  14. Ali TM and Hasnain A, 2014. Morphological, physicochemical, and pasting properties of modified white sorghum (Sorghum bicolor) starch. International Journal of Food Properties, 17(3): 523-535.
  15. Avila RG, Magalhães PC, da Silva EM, de Souza KRD, Campos CN, de Alvarenga AA and de Souza TC, 2021. Application of silicon to irrigated and water deficit sorghum plants increases yield via the regulation of primary, antioxidant, and osmoregulatory metabolism. Agricultural Water Management, 255: 107004.
  16. Borg H and Grimes DW, 1986. Depth development of roots with time: An empirical description. Trans. Am. Soc. Agric. Eng. 29, 194-197.
  17. Boursier P and Lauchli A, 1990. Growth responses and mineral nutrient relation of salt-stressed sorghum. Crop Science, 30: 1226-1233.
  18. Chance B and Maehly AC, 1995. Assay of catalase and peroxidase. PP. 764-765 in: Culowic SP, Kaplan NO. (eds). Methods in enzymology. Academic Press. Inc. New York.
  19. Chloupek O, Hrstkova P and Jurecka D, 2003. Tolerance of barley seed germination to salt and drought – stress expressed as seed vigor. Plant Breed. 122: 199-203.
  20. Farooq A, Bukhari SA, Akram NA, Ashraf M, Wijaya L, Alyemeni MN and Ahmad P, 2020. Exogenously applied ascorbic acid-mediated changes in osmoprotection and oxidative defense system enhanced water stress tolerance in different cultivars of safflower (Carthamus tinctorious). Plants, 9(1): 104.
  21. Garg N and Manchanda G, 2009. ROS Generation in plants. Plant Biology, 143: 88-96.
  22. Hedayati-Firoozabadi A, Kazemeini SA, Pirasteh-Anosheh H, Ghadiri H and Pessarakli M, 2020. Forage yield and quality as affected by salt stress in different ratios of Sorghum bicolor-Bassia indica Journal of Plant Nutrition, 43(17): 2579-2589.
  23. Howell TA, Tolk JA, Evett SR, Copeland KS and Dusek DA, 2007. Evapotranspiration of deficit irrigated sorghum. World Environmental and Water Resources Congress. ASCE.
  24. Jose R, Pardales J and Yasuhiro K, 1990. Development of sorghum root system under increasing drought stress. Japan Jour. Crop Sci. 59(4): 752-761.
  25. Nakano Y and Asada K, 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22: 867–880.
  26. Pakar N, Pirasteh-Anosheh H, Emam Y and Pessarakli M, 2016. Barley growth, yield, antioxidant enzymes, and ion accumulation affected by PGRs under salinity stress conditions. Journal of Plant Nutrition, 39(10): 1372-1379.
  27. Pirasteh-Anosheh H, Ranjbar G, Pakniyat H and Emam Y, 2016. Physiological mechanisms of salt stress tolerance in plants; an overview: 141-160. In: Azooz MM and Ahmad P, (Eds). Plant-environment Interaction: Responses and Approaches to Mitigate Stress. Wiley, London.
  28. Ranjbar GH, Ghadiri H, Razzaghi F, Sepaskhah AR and Edalat M, 2015. Evaluation of the SALTMED model for sorghum under saline conditions in an arid region. International Journal of Plant Production, 9(3): 373-392.
  29. Rawson HM, Long MJ and Munns R, 2006. Growth and development in NaCl treated plants. I: Leaf Na and Cl concentration do not determine gas exchange of leaf blades in sorghum. Australian Journal of Plant Physiology, 35: 519-527.
  30. Saed-Moucheshi A, Pakniyat H, Pirasteh-Anosheh H and Azooz MM, 2014. Role of ROS as signaling molecules in plants. In Oxidative damage to plants (pp. 585-620). Academic Press.
  31. Shobeiri SS, Habibi D, Kashani A, Paknejad F and Jafari A, 2015. Study of physiological traits of grass pea with barely in pure and mixed cropping under dry land and irrigated conditions. Agronomy Journal, 107: 91-98.
  32. Sinaki JM, Nourmohammadiand G and Maleki H, 2004. Effect of water deficit on seedling, plantlets and compatible solutes of forage sorghum CV. Speed feed. 4th International Crop Sci. Conference. Brisbane, Aus, 26 Sep-1 Oct.
  33. Soni PG, Basak N, Rai AK, Sundha P, Narjary B, Kumar P and Yadav RK, 2021. Deficit saline water irrigation under reduced tillage and residue mulch improves soil health in sorghum-wheat cropping system in semi-arid region. Scientific reports, 11: 1-13.
  34. Sumi A, 1989. Some relationship between plant growth and soil moisture variations. Kagoshima University, Japan 25: 39-51.
  35. Taiz L, Zeiger E, Moller IM and Murphy, A2015. Plant Physiology and Development. Sinauer Associates, Incorporated.
  36. Tittal M, Mir RA, Jatav KS and Agarwal RM, 2021. Supplementation of potassium alleviates water stress‐induced changes in Sorghum bicolor L. Physiologia Plantarum, 172(2): 1149-1161.
  37. Troll W and Lindley J, 1955. A photometry method for the determination of Proline. J. Biol. Chem. 215: 655-660.
  38. Zhang C, Li X, Kang Y and Wahba MA, 2021. Leaching efficiency and plant growth response in an integrated use of saline water for coastal saline soil reclamation. Land Degradation & Development, 32(16): 4595-4608.