بررسی اثر سامانه‌های مختلف آبیاری و تیمارهای کنترل علف‌هرز بر وزن خشک علف‌های هرز و عملکرد کمی و کیفی نیشکر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، علوم علف‌های هرز، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، باوی، ملاثانی، ایران.

2 استادیار گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، باوی، ملاثانی، ایران.

چکیده

به‌منظور بررسی اثر سامانه‌های مختلف آبیاری و تیمارهای مختلف کنترل علف‌های‌هرز، آزمایشی به‌صورت کرت‌های خرده شده در قالب طرح بلوک‌های کامل تصادفی در سه تکرار در سال زراعی 1399 در موسسه تحقیقات و آموزش توسعه نیشکر خوزستان انجام گرفت. پنج سامانه آبیاری، شامل آبیاری قطره‌ای سطحی (I0)، دو نوع آبیاری قطره‌ای زیرسطحی با قطره‌چکان‌هایی با دبی 2/3 و 3/6 لیتر بر ساعت و فواصل 50 و 60 سانتی‌متری از یکدیگر (به ترتیب، I1 و I2)، آبیاری بارانی خطی (سامانه ماشین آبیاری با آبپاش‌های لپا I3) و آبیاری سطحی جویچه‌ای (روش آبیاری مرسوم، I4) به‌عنوان کرت اصلی و تیمارهای علف‌های‌هرز شامل تداخل در تمام دوره (W0)، کنترل یا وجین در تمام دوره (W1) و کولتیواسیون (W2) بود. بالاترین و پایین‌ترین سطح میانگین عملکرد نی (به‌ترتیب، 167و 117 تن بر هکتار) و عملکرد شکر (به‌ترتیب، 18/24 و 12/40تن بر هکتار) به‌ترتیب، در تیمارهای آبیاری I3 و I4 مشاهده شد. میانگین عملکرد نی و شکر در تیمار W0 به‌طور معنی‌داری کمتر از تیمارهای W1 و W2بود (با اختلاف 18/34 و18/78 درصدی برای عملکرد نی و 17/84و 18/58 درصدی برای عملکرد شکر). صفات کیفی مطالعاتی، شامل بریکس، درصد ساکارز شربت، درصد خلوص شربت تحت تاثیر تیمارهای روش آبیاری و کنترل علف‌های هرز قرار نگرفت. وزن خشک کل علف‌های هرز در تیمارهای آبیاری I0 تا I4 در شرایط تیمارW0 به‌ترتیب 90، 78، 47، 43 و 173 گرم بر مترمربع و برای تیمار W2 به‌ترتیب، 30، 23، 16، 15 و 40 گرم بر مترمربع بود. نتایج این پژوهش نشان داد که در شرایط منطقه مطالعاتی، انتخاب سامانه آبیاری مناسب (سامانه آبیاری بارانی و آبیاری قطره‌ای زیرسطحی) در ترکیب با کاربرد کولتیواسیون در بازرویی اول (راتون اول)، علاوه بر کاهش آب کاربردی فصلی، می‌تواند به‌عنوان ابزاری مفید برای کاهش رقابت علف‌های هرز در کشت نیشکر توصیه گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation the effect of different irrigation systems and weed control treatments on quantitative and qualitative yield of sugarcane (Saccharum officinarum) and weeds biomass

نویسندگان [English]

  • Mahmood Fazli 1
  • Ahmad Zare 2
  • Abdolreza Siahpoosha 2
  • Elham Elahifard 2
1 MSc. Graduate in Weed Science, Plant Production and Genetics Department, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Bavi, Mollasani, Khuzestan, Iran.
2 Assistant Prof., Plant Production and Genetics Department, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Bavi, Mollasani, Khuzestan, Iran.
چکیده [English]

In order to investigate the effect of different irrigation systems and weed control treatments on quantitative and qualitative yield of sugarcane and weeds biomass, an experiment was conducted as split plot based on randomized complete block design (RCBD) with three replications in 2020 at Sugarcane Development Research and Training Institute of Khuzestan, Iran. The five irrigation systems included surface drip irrigation (I0), two types of subsurface drip irrigation with a discharge rate of 2.3 and 3.6 L/h and emitter spacing of 50 and 60 cm (I1 and I2 respectively), Low Energy Precision Application (LEPA) sprinkler irrigation (I3), and the conventional  furrow irrigation method (I4) as the main plot, and weed treatments included no weed control throughout the season, (W0), weed control throughout the season (W1), and use of cultivator (W2). The highest and lowest mean cane yield (167 and 117 ton/ha, respectively) and sugar yield (18.24, 12.40 ton/ha, respectively) were observed in I3 and I4 irrigations, respectively. Mean cane and sugar yield in W0 were significantly lower than W1 and W2 treatments (with a difference of 18.34% and 18.78% for cane yield and 17.84% and 18.85% for sugar yield, respectively). Qualitative traits including Brix, syrup sucrose percentage and syrup purity percentage were not affected by irrigation systems and weed control treatments. The total dry matter of weeds for I0, I1, I2, I3 and I4 Irrigation treatments were 90, 78, 47, 43 and 173 g/m2 under W0 treatment and 30, 23, 16, 15 and 40 g/m2 under W2 treatment, respectively. In the condition of the study area, results indicated that adoption of LEPA sprinkler or subsurface drip irrigation system together with the use of cultivator in the first ratoon leads to irrigation water saving and reduces weeds competition in sugarcane fields.

کلیدواژه‌ها [English]

  • Brix
  • Furrow irrigation
  • integrated weed management
  • Sprinkler irrigation
  • subsurface irrigation
  1. آمارنامه کشاورزی، سال زراعی 99- . 1398. وزارت جهاد کشاورزی، معاونت برنامه­ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات،. تهیه کننده­گان: احمدی،ک.، عبادزاده، ح.ر.، حاتمی، ف.، محمدنیا افروزی، ش. جلد اول محصولات زراعی.
  2. احسانی پور، ع.، عباس دخت ح.، قلی پور، م. و ابدالی مشهدی، ع.ر. 1398. ارزیابی بهره­وری آب و برخی صفات کمی و کیفی نیشکر درکشت مخلوط با لگوم. مجله به زراعی کشاورزی .21(3):233-246.
  3. امامی بیستگانی، ز.، سیادت، س.ع.، بخشنده، ع. عالمی سعید، خ. و شیر اسماعیلی، غ. ح. 1393. اثر تراکم بوته بر عملکرد دانه و صفات زراعی در چهار رقم جدید آفتابگردان. نشریه پژوهش­های کاربردی زراعی.27(103).69-75
  4. زنگویی نژاد، ر. و کاظمینی، س.ع. 1394. اثر نیتروژن و تداخل علف‌های هرز بر عملکرد و اجزای عملکرد ذرت در دو سامانه آبیاری غرقابی و قطره‌ای. فصلنامه مطالعات حفاظت گیاهان، 29(3): 365 – 377.
  5. زنگنه یوسف­آبادی، ا.، هوشمند، ع.، ناصری؛ ع.، برومند نسب، س. و پرویزی، م.1400. تاثیر مدیریت­های مختلف آبیاری قطره­ای زیرسطحی بر بهره­وری آبیاری، عملکرد و اجزای عملکرد نیشکر رقم CP69-1062. مجله علوم و مهندسی آبیاری، 44 (1): 10-15.
  6. رضایی، ی.، الهی فرد، ا.، سیادت، س.ع. و عبدالهی لرستانی، س. 1400. تلفیق وجین مکانیکی و کاربرد علف­کش در مدیریت علف­های هرز نیشکر. مجله تولیدات گیاهی، 44(2) 171-182
  7. شینی، دشتگل، ع.، ناصری، ع.ع. و برومند نسب، س. 1398. اثر فواصل و اعماق مختلف قطره­چکان­ها در آبیاری قطره­ای زیرسطحی بر میزان بهره وری آب و عملکرد نیشکر. مجله تحقیقات آب و خاک ایران، 50(5). 1243-1253
  8. Alexandratos, N. and J. Bruinsma. World Agriculture towards 2030/2050: The2012 Revision. ESA Working Paper No. 12-03. FAO, Roma, Italy.
  9. Al-Ghobari, H.M., Mohammad, S. and El Marazky, M. S. A. 2015. Assessment of smart irrigation controllers under subsurface and drip-irrigation systems for tomato yield in arid regions. Crop and Pasture Science. 66(10): 1086-1095.
  10. Balali, H., and Viaggi. 2015. Applying a system dynamics approach for modeling groundwater dynamics to depletion under different economical and climate change scenarios. Water. 7(10): 5258-5271.
  11. Blackshaw, R.E., Brandt, R.N. Janzen, H.H. Entz, T. Grant, C.A. and Derksen, D.A. 2003. Differential response of weed species to added nitrogen. Weed Science. 51(4): 532-539.
  12. Célia de Matos Pires, R., Barbosa, E.A.A. Arruda, B. Sakai, E. and Araujo da Silva T.J. 2014. Effects of subsurface drip irrigation and different planting arrangements on the yields and technological quality of sugarcane. Journal of Irrigation and Drainage Engineering. 140(9): A5014001.
  13. Chattha, A.A., Afzal, M. and Chattha. M.U. 2004. Sustainable cultivation of sugararcane for revival of sugar industry in Pakistan. Program 39th Annual Congress Pakistan Society Sugar Technology. 36-49.
  14. Dingre, S.K. and Gorantiwar, S.D. 2021. Soil moisture based deficit irrigation management for sugarcane (Saccharum officinarum) in semiarid environment. Agricultural Water Management. 245: 106549.
  15. dos Santos, L.N., Matsura, E.E. Gonçalves, I.Z. Barbosa, E.A. Nazário, A.A. Tuta, N.F. Elaiuy, M.C. Feitosa, D.R. and de Sousa, A.C. 2016. Water storage in the soil profile under subsurface drip irrigation: Evaluating two installation depths of emitters and two water qualities. Agricultural Water Management. 170: 91-98.
  16. El-Shafai, A.M.A., Fakkar, A.A.O. and Bekheet, M.A. 2010. Impact of row spacing and some weed control treatments on growth, quality and yield of sugarcane. Bulletin of Faculty of Agriculture, Cairo University. 61(2): 124-136.
  17. Ferreira, T.C. and Carr M.K.V. 2002. Responses of potatoes (Solanum tuberosum) to irrigation and nitrogen in a hot, dry climate: I. Water use. Field Crops Research. 78(1): 51-64.
  18. Garg, K.K., Luna, B. Anju, G. Biju, G. Acharya, S. Kiran, J. and Narasimhan. B. 2012. Spatial mapping of agricultural water productivity using the SWAT model in upper Bhima Catchment. India. Irrigation and Drainage. 61: 60–79.
  19. Gava, G.J.D.C., Silva, M.D.A. Silva, R.C.D. Jeronimo, E.M. Cruz, J. and Kölln, O.T 2011. Productivity of three sugarcane cultivars under dry and drip irrigated management. Revista Brasileira de Engenharia Agrícola e Ambiental. 15(3): 250-255.
  20. Gealy, D.R., Anders, M. Watkins, B. and Duke, S. 2014. Crop performance and weed suppression by weed-suppressive rice cultivars in furrow-and flood-irrigated systems under reduced herbicide inputs. Weed Science. 62(2): 303-320.
  21. Ghanbari, M., Zaboli, G.R. and Mir, B. 2013. Comparing irrigation methods and weed control on yield of garlic (Allium sativum) cultivars. World of Science Journal. 3: 70-78.
  22. Gunarathna, M.H.J.P., Sakai, K. Nakandakari, T. Momii, K. Onodera, T. Kaneshiro, H. Uehara, H. and Wakasugi, K. 2018. Optimized subsurface irrigation system: the future of sugarcane irrigation. Water. 10(3): 314.
  23. Inman-Bamber, N.G. and Smith, D.M. 2005. Water relations in sugarcane and response to water deficits. Field crops research. 92(2-3): 185-202.
  24. Irmak, S., Djaman, K. and Rudnick, D.R. 2016. Effect of full and limited irrigation amount and frequency on subsurface drip-irrigated maize evapotranspiration, yield, and water use efficiency and yield response factors. Irrigation Science. 34: 271–286.
  25. Jayakumar, M., Surendran, U. and Manickasundaram, P. 2014. Drip fertigation effects on yield, nutrient uptake and soil fertility of Bt cotton in semiarid tropics. International Journal of Plant Production. 8: 375–390.
  26. Khan, M.Z., Bashir, S. and Bajwa, M.A. 2004. Performance of promising sugarcane varieties in response of inter-row spacing towards stripped cane and sugar yield. Pakistan Sugar Journal. 19 (5): 15-18.
  27. Kumar, V., Samar, S. and Chand, M. 2014. Nutrient and water management for higher sugarcane production, better juice quality and maintenance of soil fertility- A review. Agricultural Reviews. 35 (3): 184–195.
  28. Kumawat, P.D., Kacha, D.J. and Dahima, N.U. 2016. Effect of crop geometry and drip irrigation levels on sugarcane in South Saurashtra region of India. Indian Journal of Agricultural Research. 50(4): 366-369.
  29. Okasha, E.M., Hashem, F.A. and El-Metwally, I.M. 2020. Effect of irrigation system and irrigation intervals on the water application efficiency, growth, yield, water productivity and quality of squash under clay soil conditions. Plant Archives. 20(2): 3266-3275.
  30. Olivier, F.C. and Singels, A. 2012. The effect of crop residue layers on evapotranspiration, growth and yield of irrigated sugarcane. Water SA. 38 (1): 77-–86.
  31. Postal, S., Polak, P. Gonzales, F. and Keller, J. 2001. Drip irrigation for small farmers: a new initiative to alleviate hunger and poverty. Water International. 26 (1): 3–13.
  32. Ramesh, P., Kailasam, C. and Srinivasan, T.R. 1994. Performance of sugarcane (Saccharum officinarum) under surface drip, sub surface drip (Biwall) and furrow methods of irrigation. Journal of Agronomy and Crop Science. 172(4): 237-241.
  33. Sankar, V., Lawande, K.E. and Tripathi, P.C. 2011. Effect of micro irrigation practices on growth and yield of garlic (Allium sativum) var. G. 41. Journal of Spices and Aromatic Crops. 17(3). 230-234.
  34. Singandhupe, R.B., Rao, G.G.S.N. Patil, N.G. and Brahmanand, P.S. 2003. Fertigation studies and irrigation scheduling in drip irrigation system in tomato crop (Lycopersicon esculentum). European Journal of Agronomy. 19(2): 327-340.
  35. Sivanappan, K. 1994. Prospects of micro-irrigation in India. Irrigation and drainage systems, 8 (1): 49–58
  36. Surendran, U., and Murugappan, V. 2010. Pragmatic approaches to manage soil fertility in sustainable agriculture. Journal of Agronomy. 9: 57–69.
  37. Surendran, U., Jayakumar, M. and Marimuthu, S. 2016a. Low cost drip irrigation: Impact on sugarcane yield, water and energy saving in semiarid tropical agro ecosystem in India. Science of the Total Environment. 573: 1430-1440.
  38. Surendran, U., Ramesh, V. Jayakumar, M. Marimuthu, S. and Sridevi, G. 2016b. Improved sugarcane productivity with tillage and trash management practices in semiarid tropical agro ecosystem in India. Soil Tillage Research. 158: 10–21.
  39. Surendran, U., Sushanth, C.M. Mammen, G. and Joseph, E.J. 2014. Modeling the impacts of increase in temperature on irrigation water requirements in Palakkad district – a case study in humid tropical Kerala. Journal of Water and Climate Change. 5 (3): 471–487.
  40. Sutton, K.F., Lanini, W.T. Mitchell, J.P. Miyao, E.M. and Shrestha, A. 2006. Weed control, yield, and quality of processing tomato production under different irrigation, tillage, and herbicide systems. Weed Technology. 20(4): 831-838.
  41. Turral, H., Svendsen, M. and Faures, J.M. 2010. Investing in irrigation: Reviewing the past and looking to the future. Agricultural Water Management. 97 (4): 551–560.
  42. Van Donk, S.J., Petersen, J.L. and Davison, D.R. 2013. Effect of amount and timing of subsurface drip irrigation on corn yield. Irrigation Science. 31(4): 599-609.
  43. Wang, E., S. Attard, A. Linton, McGlinchey, M. Xiang, W. Philippa, B. and Everingham, Y. 2020. Development of a closed-loop irrigation system for sugarcane farms using the Internet of Things. Computers and Electronics in Agriculture. 172: 105376.
  44. Yirefu, F., Tana, T. Tafesse, A. and Zekarias, Y. 2012. Competitive ability of sugarcane (Saccharum officinarum ) cultivars to weed interference in sugarcane plantations of Ethiopia. Crop Protection. 32: 138-143.