ارزیابی مقدار آب کاربردی و بهره‌وری آب سویا در دشت مغان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، عضو هیات علمی بخش تحقیقات فنی و مهندسی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اردبیل (مغان)، سازمان تحقیقات،

2 استاد موسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

3 استادیار، بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اردبیل (مغان)، سازمان تحقیقات، آموزش

چکیده

در پژوهش حاضر، با انجام اندازه‌گیری‌های صحرایی در فصل زراعی 1400-1399، آب کاربردی فصلی و بهره‌وری فیزیکی و اقتصادی آب سویا در 37 مزرعه با مدیریت زارعین (با سامانه آبیاری شیاری/نواری) در دشت مغان، استان اردبیل ارزیابی شد. در فصل زراعی این پژوهش، میانگین نیاز آبی خالص سویا در مزارع مزبور 542 میلی‌متر (بین 431 تا 691 میلی‌متر) و میانگین 10 ساله آن 543 میلی‌متر (442 تا 671 میلی‌متر) بود. میانگین کل آب کاربردی (مجموع بارش موثر فصلی و آب آبیاری) در مزارع مزبور 6554 مترمکعب در هکتار (5005 تا 10009 مترمکعب در هکتار) و میانگین عملکرد دانه سویا 2/90 تن در هکتار (2/05 تا 4/12 تن در هکتار) به‌دست آمد. میانگین کل آب کاربردی در کشت بهاره سویا (7906 مترمکعب در هکتار) به‌طور معـنی‌داری (P < 0.01) بیشتر از مقدار نظیر آن برای کشت تابستانه (6390 مترمکعب در هکتار) بود. نمایه‌های بهره‌وری مجموع آب آبیاری و بارش موثر (WPI+Pe) و بهره‌وری اقتصادی آب آبیاری (WP$) در مزارع مطالعاتی به‌ترتیب، با میانگین 24/0 کیلوگرم در مترمکعب و 33/19 هزار ریال در مترمکعب، بین 0/18 تا 0/30 کیلوگرم در مترمکعب و 15/21 تا 62/40 هزار ریال در مترمکعب متغیر بود. عملکرد دانه سویا در بخش عمده مزارع مطالعاتی (70% مزارع) فراتر از حداقل عملکرد قابل انتظار دانه سویا در کشت آبی (2/5 تن در هکتار) بود. نتایج نشان داد با اعمال پنج و سه نوبت آبیاری به‌ترتیب، برای سویای بهاره و تابستانه، سطح مطلوبی از عملکرد و نمایه‌های بهره‌وری آب دست یافتنی است. میانگین نمایه راندمان کاربرد آب طی مراحل رشد سویا در مزارع مزبور در دامنه 50% تا 82% قرار داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of Soybean Applied Water and Water Productivity across Moghan Plain, Ardabil Province, Iran

نویسندگان [English]

  • Farzin Parchami-Araghi 1
  • Fariborz Abbasi 2
  • Keramat Akhavan 3
1 Assistant Prof., Agricultural Engineering Research Institute, Ardabil Agricultural and Natural Resources Research and Education Center, AREEO, Ardabil, Iran
2 Agricultural Engineering Research Institue, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
3 Assistant Professor, Agricultural Engineering Research Department, Ardabil Agricultural and Natural Resources Research and Education Center, AREEO, Ardabil, Iran.
چکیده [English]

In this study, the seasonal applied water and physical and economic water productivity of soybean were evaluated through monitoring 37 farmers’ fields (with furrow/border irrigation systems) in Moghan Plain, Ardabil Province, Iran, during the 2020-21 growing season. The net soybean water requirement during that growing season and its 10-year mean value ranged from 431-691 mm and 442-671 mm with a mean of 542 and 543 mm, respectively. The mean seasonal total applied water (irrigation + effective precipitation) and the grain yield were 6554 m3 ha-1 and 2.90 ton ha-1, ranging from 5005-10009 m3 ha-1 and 2.05-4.12 ton ha-1, respectively. The mean seasonal total applied water for spring soybean (7906 m3 ha-1) was significantly (P < 0.01) higher than its corresponding value for summer soybean (6390 m3 ha-1). Total water productivity (WPI+Pe) and economic water productivity (WP$) ranged from 0.18 to 0.30 kg m-3 and 15.21 ´ 103 to 62.40 ´ 103 Rials m-3 with a mean of 0.24 kg m-3 and 33.19 ´ 103 Rials m-3, respectively. In most of the studied farms (70% of total cases), the grain yield was higher than the minimum expected threshold for irrigated soybean (2.5 ton ha-1). The results indicated that reasonable levels of grain yield and water productivity indices can be achieved by applying five and three irrigations for spring and summer soybean, respectively. The mean water application efficiency over soybean growth stages in the studied fields ranged between 50-82%.

کلیدواژه‌ها [English]

  • FAO Penman-Monteith
  • Furrow Irrigation
  • Economic Water Productivity
  • Net Water Requirement
  1. احمدی، ک.، عبادزاده، ح.ر.، حاتمی، ف.، عبدشاه، ه. و کاظمیان، آ. 1399. آمارنامه کشاورزی سال 97-1396. وزارت جهاد کشاورزی و معاونت برنامه‌ریزی و اقتصادی، دفتر فناوری اطلاعات و ارتباطات، جلد اول: محصولات زراعی، 89 ص.
  2. اسلامی، ا. 1395. ابزار اندازه‌گیری آب آبیاری در روش‌های آبیاری سطحی، نشریه فنی شماره 44. موسسه تحقیقات فنی و مهندسی کشاورزی. 24 ص.
  3. امینی‌فر، ج.، بیگلویی، م.ح.، محسن‌آبادی، غ. و سمیع‌زاده، ح. (1391). تاثیر کم‌آبیاری بر عملکرد و بهره‌وری آب در هفت رقم سویا در منطقه رشت. نشریه دانش آب و خاک. 21(4): 91-81.
  4. بابازاده، ح و سرائی تبریزی، م. 1391. واسنجی مدل SWAP برای شبیه‌سازی عملکرد دانه، عملکرد بیولوژیک و کارایی مصرف آب سویا. علوم و مهندسی آبیاری، 35(4): 83-96.
  5. پرچمی عراقی، ف.، میرلطیفی، س.م.، قربانی دشتکی، ش.، وظیفه‌دوست، م. و صادقی لاری، ع. 1395. توسعه یک چارچوب ریزمقیاس‌سازی به‌منظور برآورد تبخیر-تعرق مرجع زیرروزانه: 1- مقایسه عملکرد برخی مدل‌های ریزمقیاس‌سازی داده‌های هواشناسی روزانه، نشریه آب و خاک، 30(2): 354-334.
  6. تقی‌نژاد، ج. 1394. آرایش کاشت دو ردیف سویا روی پشته. نشریه فنی، شماره 52. مدیریت هماهنگی ترویج کشاورزی، سازمان جهاد کشاورزی استان اردبیل، اردبیل. 15ص.
  7. رستمی اجیرلو، ا.، اصغری‌پور، م.، قنبری، ا.، جودی، م. و خرمی‌وفا، م. (1396). بررسی تأثیرکم آبیاری بر عملکرد، خصوصیات کیفی و شاخص بهره‌وری مصرف آب سه رقم سویا در دشت مغان. نشریه حفاظت منابع آب و خاک. 7(1): 125-113.
  8. فرح‌زا، م.ن.، نظری، ب.، اکبری، م.ر.، نائینی، م.س. و لیاقت، ع. 1399. ارزیابی بهره‌وری آب فیزیکی و اقتصادی محصولات زراعی در دشت مغان و تحلیل رابطه بهره‌وری فیزیکی و اقتصادی آب. نشریه علمی پژوهشی مهندسی آبیاری و آب ایران. 11(2): 179-166.
  9. وحدی، ن.، قلی‌نژاد، ا.، منصوری‌فر، س.، غیرتی آرانی، ل. و رحیمی، م. (1398). تأثیر تنش آبی بر عملکرد و اجزای عملکرد سه رقم سویا. فنآوری تولیدات گیاهی. 19(1): 113-103.
  10. Adeboye OB, Schultz B, Adekalu KO, and Prasad K, 2015. Crop water productivity and economic evaluation of drip-irrigated soybeans (Glyxine max L. Merr.). Agriculture & Food Security, 4(10): 1-13.
  11. Allen RG, Pereira LS, Raes D, and Smith M, 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO irrigation and drainage paper 56, FAO, Rome, Italy, 301 pp.
  12. Arora VK, Singh CB, Sidhu AS, and Thind SS, 2011. Irrigation, tillage and mulching effects on soybean yield and water productivity in relation to soil texture. Agricultural Water Management, 98(4): 563-568.
  13. Bos MG, Kselik RAL, Allen RG, and Molden D, 2008. Water requirements for irrigation and the environment. Springer Science & Business Media.
  14. Burt CM, 2013. The irrigation sector shift from construction to modernization: What is required for success? Irrigation and drainage, 62(3): 247-254.
  15. Food and Agricultural Organisation of the United Nations (FAO), 2020. Crop Water Information: Soybean. (Available at: http://www.fao.org/land-water/databases-and-software/crop-information/soybean/en/)
  16. Food and Agriculture Organization Statistical Data (FAOSTAT), 2021. FAO Statistical Data. (Available at: http://faostat3.fao.org/faostat-gateway/go/to/home/E)
  17. Gajić B, Kresović B, Tapanarova A, Životić L, and Todorović M, 2018. Effect of irrigation regime on yield, harvest index and water productivity of soybean grown under different precipitation conditions in a temperate environment. Agricultural Water Management, 210: 224-231.
  18. Garcia AGy, Persson T, Guerra L, and Hoogenboom G, 2010. Response of soybean genotypes to different irrigation regimes in a humid region of the southeastern USA. Agricultural water management, 97(7): 981-987.
  19. Massey JH, Stiles CM, Epting JW, Powers RS, Kelly DB, Bowling TH, Janes CL, and Pennington DA, 2017. Long-term measurements of agronomic crop irrigation made in the Mississippi delta portion of the lower Mississippi River Valley. Irrigation Science, 35(4): 297-313.
  20. Mokari-Ghahroodi E, Noory H, and Liaghat A, 2015. Performance evaluation study and hydrologic and productive analysis of irrigation systems at the Qazvin irrigation network (Iran). Agricultural Water Management, 148: 189-195.
  21. Molden D, Murray-Rust H, Sakthivadivel R, and Makin I, 2003. A water-productivity framework for understanding and action. In: Kijne W., Barkers R., and Molden D. (Eds.), Water Productivity in Agriculture: Limits and Opportunities for Improvements. CAB International, Wallingford, United Kingdom.
  22. Qiu LJ, and Chang RZ, 2010. The Origin and History of Soybean. In: Singh G. (Ed.), The soybean: botany, production and uses. CABI, Oxfordshire, UK, pp. 1-23.
  23. Singh G, 2010. Water Management in Soybean. In: Singh G. (Ed.), The soybean: botany, production and uses. CABI, Oxfordshire, UK, pp. 191-208.
  24. Todorovic M, Karic B, and Pereira LS, 2013. Reference evapotranspiration estimate with limited weather data across a range of Mediterranean climates. Journal of Hydrology, 481: 166-176.
  25. USDA-NRCS, 1993. Chapter 2: Irrigation water requirements, Part 623: Irrigation. National Engineering Handbook, United States Depart-ment of Agriculture Soil Conservation Service, Washington, DC. (Available at: ftp://ftp.wcc.nrcs.usda.gov/wntsc/waterMgt/irrigation/NEH15/ch2.pdf(.
  26. United States Salinity Laboratory Staff (USSLS), 1954. Diagnosis and improvement of saline and alkali soils, Agriculture Handbook No 60, Washington DC, USA, pp. 160.
  27. Wilcox LV, 1955. Classification and use of the irrigation waters. US Department of Agriculture Circular No 969, Washington, DC, pp. 19.
  28. Yang K, and Koike T, 2005. A general model to estimate hourly and daily solar radiation for hydrological studies. Water Resources Research, 41, W10403.