اثر شوری آب آبیاری بر عملکرد نسبی و برخی ویژگی‌های مورفولوژیکی و فیزیولوژیکی سورگوم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه علوم خاک، دانشکده کشاورزی، دانشگاه آزاد اسلامی، واحد اصفهان (خوراسگان)، اصفهان، ایران.

2 استادیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه آزاد اسلامی، واحد اصفهان (خوراسگان)، اصفهان، ایران.

3 دانشیار گروه علوم و مهندسی خاک دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، مازندران، ایران.

چکیده

این آزمایش برای بررسی اثر تنش شوری آب آبیاری بر ویژگی­های مورفولوژیکی و فیزیولوژیکی گیاه سورگوم( رقم اسپیدفید) در قالب طرح بلوک­های کامل تصادفی با سه تکرار در  ستون­های خاک در مرکز تحقیقات کشاورزی و منابع طبیعی استان مازندران به اجرا در آمد. آزمایش در 15ستون­ خاک طی 56 روز انجام شد. تیمارهای شوری شامل آب چاه (شاهد) (dSm-1 99/0S1=مخلوط آب دریا و آب چاه با نسبتهای 4/1 (dSm-1 7/4S2=4/2 (dSm-1 1/8S3=4/3 (dSm-1 7/13S4=) و آب دریا (dSm-1 9/15S5=) بود. اندازه­گیری­ها شامل وزن خشک و تر اندام هوایی، دانه و ریشه، قطر و ارتفاع ساقه اصلی، شاخص سطح برگ، مساحت برگ، شاخص برداشت، عملکرد بیولوژیک و شاخص­های مقاومت گیاه سورگوم بود. بر اساس. نتایج، شوری آب و خاک بر تمامی صفات اندازه­گیری شده، اثر معنی­دار داشت. افزایش شوری آب آبیاری از سطح شاهد (S1) تا تیمار S5، باعث کاهش معنی­دار تمام صفات اندازه­گیری­شده به غیر از شاخص برداشت و نسبت وزن خشک ریشه به وزن خشک ساقه، شد. همچنین، نتایج نشان داد کهS1 بهترین سطح شوری برای رسیدن به بیشینه وزن خشک در بوته گیاه سورگوم (معادل 218 گرم)، بود. در مورد شاخص­های مقاومت  و    نیز تیمار S1 نسبت بالاتری از سایر تیمارها داشت و مقدار آن به ترتیب 67/6 و 4/1 بود. در تیمار S3، کاهش وزن خشک اندام ­هوایی در مقایسه با تیمار شاهد 5/23% بود، اما در این مورد بین تیمارهای S3 و S4 تفاوت معنی­داری در مقایسه با تیمار شاهد مشاهده نشد. همچنین عملکرد نسبی سورگوم (عملکرد هر تیمار درمقایسه با شاهد)  تا شوری عصاره اشباع خاک نزدیک به 65/3 دسی­زیمنس بر متر کاهشی نداشت و به عنوان حد آستانه تحمل این گیاه در نظر گرفته شد. اما بعد از افزایش شوری، عملکرد گیاه کاهش یافت و در شوری حدود 15 دسی زیمنس بر متر به نصف رسید. شیب خط کاهش عملکرد سورگوم برابر 3% بر دسی زیمنس بر متر محاسبه شد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Irrigation Water Salinity on Relative Yield and Some Morphological and Physiological Characteristics of Sorghum

نویسندگان [English]

  • Marjan Noroozi 1
  • Elham Chavoshie 2
  • Mehdi Ghajar Sepanlou 3
1 PhD Student, Department of Soil Sciences, Faculty of Agriculture, Islamic Azad University, Isfahan Branch (Khorasgan), Isfahan, Iran.
2 Assistant Professor, Department of Soil Sciences, Faculty of Agriculture, Islamic Azad University, Isfahan Branch (Khorasgan), Isfahan, Iran.
3 chavoshie@yahoo.com Associate Professor, Department of Soil Science and Engineering, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Mazandaran, Iran.
چکیده [English]

Salinity is one of the most important abiotic stresses that has many negative effects on plant growth. To investigate the effect of salinity water irrigation stress on morphological and physiological characteristics of sorghum, an experiment was conducted in a randomized complete block design with 3 replications in soil columns located in the Agricultural and Natural Resources Research Center of Mazandaran Province. The number of experimental columns was 15 and the duration of the experiment was 56 days. Salinity treatments included well water (control) (S1=0.995 dSm-1), Mix seawater and well water in proportions 1/4 (S2=4.680 dSm-1), 2/4 (S3=8.130 dSm-1), 3/4 (S4=13.710 dSm-1) and seawater (S5=15.910 dSm-1). In this study, dry and wet weight of shoots, seeds and roots, diameter and height of main stem, leaf area index, leaf area, harvest index, biological yield and resistance indices of sorghum were measured. The results of analysis of variance showed that the effect of salinity on all measured traits was significant. Increasing the salinity level of irrigation water from control (S1) to treatment (S5) caused a significant decrease at the rate of 1 to 70% in all measured traits except harvest index and root to stem ratio. Also the results of this study showed that the best salinity level to achieve maximum yield in sorghum (Equivalent to 13/218 g) is salinity level (S1). Regarding resistance indices, S1 treatment had higher k/Na and Ca/Na ratios than other treatments, which were 6.67 and 1.4, respectively. Also, the results of comparing the mean of traits between different treatments showed that there were no significant differences between S3 and S4 treatments in traits such as grain yield, straw yield, plant height, leaf area, harvest index, dry weight of root and resistance indices that Up to 3: 1 ratio, seawater to well water can be used to grow sorghum. Also, the relative yield of sorghum to salinity did not decrease by about 3.65 dS /m, which was considered as the tolerance threshold of this plant. But after increasing the salinity of soil saturated extract, plant yield decreased and at salinity of about 15 dS /m was halved. The slope of the sorghum yield reduction line at this stage was calculated to be 3% dS / m.

کلیدواژه‌ها [English]

  • Salinity stress
  • Salinity tolerance threshold
  • Sorghum variety Speedfeed
  1. احمدی،ک.، عبادزاده، ح. ر.، حاتمی، ف.، عبدشاه، ه. و کاظمیان، آ.، 1399، آمارنامه کشاورزی سال زراعی 1398-1397، جلد اول: محصولات زراعی، 97 ص.
  2. داداشی، م. ر.، ا. مجیدی هروان، ا. سلطانی و ع. نوری. 1386. ارزیابی واکنش لاین های مختلف جو به تنش شوری. مجله علمی پژوهشی علوم کشاورزی. شماره 1. صفحه: 191- 181.
  3. دردی پور، ا. 1382. بررسی نقش پتاسیم و روی در کاهش اثرات سوء ناشی از آبیاری با آب دریای خزر بر روی رشد و عملکرد جو، پایان‌نامه دکتری رشته خاکشناسی، دانشکده کشاورزی دانشگاه تربیت مدرس.
  4. دیانت مهارلویی، ز.، مقصودی، ک. و امام، ی.، 1393. تأثیر شوری و سالسیلیک اسید بر ویژگی­های مورفولوژیک و فیزیولوژیک سورگوم در مراحل اولیه رشد (Sorghum bicolor (L.) Moench). نشریه فرایند و کارکرد گیاهی، 3(7): 57-65.
  5. راشد محصل، م.ح.، حسینی، م.، عبدی، م.و. و ملافیلابی، ع. 1376. کشاورزی غلات.انتشارات جهاد دانشگاهی مشهد.
  6. رستگار، ا.، ا. جنیدی جعفری، م. فرزادکیا، ر. رضائی کلانتری، ا. اله­آبادی و ع. م. قلی­زاده. 1391. بررسی تأثیر کمپوست مواد زائد شهری بر میزان نشت و جذب فلزات سنگین از خاک شنی رسی لومی، مجله دانشگاه علوم پزشکی سبزوار. 19(3):286-277.
  7. رضایی، ح. 1356. روش­های تجزیه گیاه. وزرات کشاورزی و عمران روستایی، مؤسسه خاکشناسی و حاصلخیزی خاک. نشریه شماره12.
  8. سرمدنیا، غ. ح. و ع. کوچکی. 1386. فیزیولوژی گیاهان زراعی. انتشارات جهاد دانشگاهی مشهد. ص 400.
  9. شریفیان، ح. و م. کاظمی حسنوند. 1394. بررسی عملکرد و اجزای عملکرد گیاه سورگوم تحت شرایط آبیاری با آب دریای خزر . نشریه آبیاری و زهکشی ایران، 1(9): 169-163.
  10. علی احیائی، م. بهبهانی­زاده. ع. ا. 1372. شرح روش های تجزیه شیمیایی خاک (جلد اول)، وزارت کشاورزی سازمان تحقیقات آموزش و ترویج کشاورزی مؤسسه تحقیقات خاک و آب، نشریه شماره 893، 77 صفحه.
  11. علیزاده، ا. 1377. کیفیت آب در آبیاری. انتشارات آستان قدس رضوی. مشهد. 96صفحه.
  12. قائدی، س. افراسیاب، پ. لیاقت، ع.، a1394، مقایسه­ی روش­های تلفیق آب شور و غیرشور در کشت سورگوم علوفه­ای و توزیع شوری در نیم­رخ خاک. علوم و مهندسی آبیاری. 39(1): 179-167.
  13. قائدی، س. افراسیاب، پ. لیاقت، ع. و خمری، ع.، b1394، استفاده­ی تلفیقی از آب شور و غیرشور در کشت سورگوم و آفتابگردان در دشت سیستان. تحقیقات آب و خاک. 46(2): 182-173.
  14. کافی، م. و و. س. استیورات. 1377. اثرات شوری و تجمع کاتیون­ها در اندام هوایی و ریشه ارقام گندم حساس و مقاوم به شوری. مجله علوم زراعی ایران. 2: 21-9.
  15. معمار باشی، پ.، و ف. شیدای. 1391. آبهای غیرمتعارف فرصتی جهت تقویت منابع آبی و دستیابی به امنیت غذایی. اولین همایش ملی بیابان. خرداد ماه، دانشگاه تهران.
  16. مهندسین مشاور رویان، 1387. دستورالعمل تجزیه آزمایشگاهی نمونه­های خاک و آب. معاونت برنامه­ریزی و نظارت راهبردی رئیس جمهور. نشریه 467. 278 صفحه.
  17. نصراصفهانی، ا. و گلچین، ن.، 1387. برآورد کارایی مصرف آب محصولات زراعی در دشت برخوار اصفهان و دشت گرگان و گنبد. تهران: مؤسسه­ی پژوهش­های برنامه­ریزی و اقتصاد کشاورزی- مدیریت امور پردازش و تنظیم یافته­های تحقیقاتی. 47 ص.
  18. نصرالهی ، ع.ح. ، هوشمند ، ع. ، و برومند نسب ، س. 1394. بررسی واکنش ذرت به شوری تحت آبیاری قطره ای و مدیریت آبیاری.مجله علوم و مهندسی آبیاری ، 38 (4) ، 32-25.
  19. Abdelgawad, G., and A. Ghaibeh. 2001. Use of low quality water for irrigation in the Middle In: Proceeding of the Symposium on the Sustainable Management of Irrigated Land for Salinity and Toxic Elements Control, US Salinity Laboratory Riverside California. 25– 27/6/2002. pp. 20–25.
  20. Abdelgawad, G., A. Arslan, A. Gaihbe, and F. Kadouri. 2005. The effects of saline irrigation water management and salt tolerant tomato varieties on sustainable production of tomato in Syria 1999–2002. Agricultural Water 78: 39–53.
  21. Ali, T.M., and A. Hasnain. 2014. Morphological, physicochemical, and pasting properties of modified white sorghum (Sorghum bicolor) starch. International Journal of food properties. 17(3): 523-535.
  22. Amacher, K., J. R. Koenig, and B. Kitchen. 1997. Salinity and plant tolerance. Utah State University. Extension Electronic Publishing.
  23. Ashraf, M., and T. McNeilly. 1990. Responses of four Brassica species to sodium chloride. Exp. Bot. 30:475-487.
  24. Baker, R. J., and G. Gebeyehou. 1982. Comparative growth analysis of two spring wheats and one spring barley. Crop. Sci. 22:1225-1229.
  25. Bernstein, N., W. K. Silk, and A. Lauchli. 2001. Spatial and temporal aspects of sorghum leaf growth under conditions of NaCl stress. Planta 191:433-439.
  26. Bouyoucos, G.J.1962. Hydrometer Method Improved for Making Particle Size Analyses of Soils1. Agronomy Journal. 54(5): 464.
  27. Bybordi, A. 2012. Study effect of salinity on some physiologic and morphologic properties of two grape cultivars. Life Science Journal. 9(4), 1092-1101.
  28. Cramer, G. R., and D. C. Bowman. 1991. Short term leaf elongation kinetics of maize in response to salinity are independent of the root. Plant Physiol. 95: 965-967.
  29. Croser, C., S. Renault, J. Franklin, and J. Zwiazek. 2001. The effect of salinity on the emergence and seedling growth of piceamorian, picceaglausa and pinusbanksiana. Environ. Poll. 115:6-16.
  30. De Wit, C.T. 1958. Transpiration and Crop Yields. Verslagen van Landbouwkundige Onderzoekingen, No. 64.6.Wageningen, The Netherlands.
  31. Drazkiewicz, M. 1994. Chlorophyllase, occurrence, functions, mechanism of action, effects of external and internal factors. Crop Sci. 30(3): 321-331.
  32. Emam, Y. 2011. Cereal Production. Shiraz University Press, Shiraz, Iran, 190p.
  33. Feigin, A., I. Rylski, A. Meriri, and J. Shalhevet. 1987. Response of melon and tomato plants to chloride-nitrate ratio in saline nutrition solution. J. Plant Nutr. 10:1787-1794.
  34. Francois, L.E., T.J. Donovan, and E.V. Maas. 1984. Salinity effects on seed yield, growth and germination of grain sorghum. Agron. J. 76: 741–744.
  35. Francois, L. E., C. M. Grieve, E.V. Mass, and S.M. Leseh. 1994. Time of salt stress growth and yield components of irrigated wheat. Agron. J. 86:100-107.
  36. Ghazi, N., R. Al-Karaki, M. Hammad, and Rusan. 2001. Response of two tomato cultivars differing in salt tolerance inoculation with mycorrhizal fungi under salt stress. Mycorrhizae. 11:43-47.
  37. Hamblin, Ap. 1981. Filter – paper method for routine measurement of field water potential. Journal of Hydrology. 53: 355-360.
  38. Havlin, J. L., J. D. Beaton, S. L. Tisdale, and W. L. Nelson. 2004. Soil Fertility and Fertilizers: An Introduction to Nutrient Management. 7th Edition, Prentice Hall, USA.
  39. He, T., and G. R. Cramer. 1993. Salt tolerance of rapid-cycling Brassica species in relation potassium/ sodium ratio and selectivity at the whole plant and callous levels. Journal of Plant Nutrition. 16(7): 1263-1277.
  40. Hung, C. H. Zong, L. Buonanno, M. Xue, X. Wang, T. and A. Tedeschi. 2012. Impact of saline water irrigation on yield and quality of melon (Cucumismelo cv. Huanghemi) in northwest China: European Journal of Agronomy. 43:68-76.
  41. Javadi, H., M.H. Rashed Mohasel, Gh.R. Zamani, E. Azari Nasr Abadi, and Gh.R. Musavi. 2007. Effect of plant density on growth indices in four grain sorghum cultivars. Iranian J. Field Crops Res. 4: 265 – 253.
  42. Karthikeyan, K.G., M. Kalbasi, P.S. Miller. 2005. Nitrogen and Solution Dynamics in Soils Receiving ChemicallyTreated Dairy Manure, J. Trans. ASAE. 48: 601-610.
  43. Khamisia, S. A., S. A. Prathaparb, and M. Ahmedc .2012. Conjunctive use of reclaimed water and groundwater in crop rotations. Agricultural Water Management. 116: 228– 234.
  44. Koyro, H.W., M.A. Khan, and H. Lieth. 2011. Halophytic crops: a resource for the future to reduce the water crisis? Emirates Journal of Food and Agriculture. 23: 1–16.
  45. Krishnamurthy, L., B.V.S. Reddy, and R. Seraj. 2003. Screening sorghum germplasm for tolerance to soil salinity. International Sorghum and Millets Newsletter. No. 44: 90-93.
  46. Lacerda, C. F., J. Cambraria, M. A. Oliva, H. A. Ruiz, and J. T. Prisco. 2003. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Rev. Bras. Fisiol. Veg. 49:107-120.
  47. Lauchli, A. and E. Epstein. 2000. Plant responses to saline and sodic conditions. pp: 11-117. New York.
  48. Leoplod, A. C., and R. P. Willing. 1984. Evidence for toxicity effects of salt on membrarces. In salinity Tolerance in plants: strategic for crop Improvement. Edited by R. Staples and G. H. Toenniessen. Pp: 67-76.
  49. Mass, E.V., and G.J. Hoffman. 1977. Crop salt tolerance–current assessment. Journal of Irrigation and Drainage. Div. ASCE. 103:115– 134.
  50. Mass, E.V., J.A. Poss, and G.J. Hoffman. 1986; Salinity sensitivity on sorghum at three growth stages. Irrig. Sci. 7:1–11.
  51. Miyatoo, S., E.P. Glenn, and M.W. Olsen.1996. Growth, water use and salt uptake of four halophytes irrigated with highly saline water. Journal of Arid Environments. 32(2):141-159.
  52. Morales, C., R.M.Cusido, J.Palazon, and M.Bonfill.1993. Response of Digitalis purpurea plant to temporary Journal of Plant Nutrition. 16(2): 335- 327.
  53. Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology. 59:651- 681.
  54. Naseer, S. H. 2001. Response of barley (Hordeum vulgare ) at various growth stages to salt stress. Journal of Biological Science. 1(5): 326-329.
  55. Olsen, S.R., and L.E. Sommers.1990. Phosphorus, In: Page A. L., Method of soil analysis. Part 2. and agron monoger. ASA, Madison, WI. Pp: 403-431.
  56. Parida, A. K., and A.B. Das. 2005. Salt tolerance and salinity effects on plants: Areview. Ecotoxicol. Environ. Safety. 60:324-349.
  57. Pedrero,F., I. Kalavrouziotis, J.J. Alarcón, P. Koukoulakis, and T. Asano .2010. Use of treated municipal wastewater in irrigated agriculture review of some practices in Spain and Greece. Agricultural Water Management. 97: 1233-1241.
  58. Pessaraki, M. 1999. Handbook of plant and Crop Stress. Marcel dekker. Inc.
  59. Pirasteh-Anosheh, H., G. Ranjbar, H. Pakniyat, and Y.Emam .2016. Physiological mechanisms of salt stress tolerance in plants; an overview: 141-160. In: Azooz, M. M. and Ahmad, P., (Eds). Plantenvironment Interaction: Responses and Approaches to Mitigate Stress. Wiley, London.
  60. Rana, M. 1988. Causes of varited differences in salt tolerance. Proc of the Int cong of Plant Physiol. 960-989.
  61. Ranjbar, G., H. Ghadiri, and A. R. Sepaskhah. Effects of Kochia indica density and irrigation water salinity on sorghum and K. indica dry matter and chemical composition. Journal of Biological and Environmental Sciences. 8: 115-123.
  62. Ranjbar, G., H. Ghadiri, and M. Edalat. 2015. Effect of kochia (Kochia indica) density on yield and some physiological characteristics of sorghum under salinity stress. Journal of Crop Production and Processing. 18: 207-219.
  63. Rawson, H. M., M. J. Long, and R. Munns. 2006. Growth and development in NaCl treated plants. I: Leaf Na+ and Cl- concentration do not determine gas exchange of leaf blades in sorghum. Aust. J. Plant Physiol. 35: 519- 527.
  64. Razzaghi, F., S.H. Ahmadi, V.I. Adolf, C.R. Jensen, S.E. Jacobsen, and M.N. Andersen. 2011. Water relations and transpiration of quinoa (Chenopodium quinoa Willd) under salinity and soil drying. Journal of Agronomy and Crop Science. 197(5): 348-360.
  65. Reginato, M., C. Travaglia, H. Reinoso, F. Garello, and V. Luna .2016. Salt mixtures induce anatomical modifications in the halophyte Prosopis strombulifera (Fabaceae: Mimosoideae). Flora-Morphology, Distribution, Functional Ecology of Plants. 218: 75-85.
  66. Sinha, A., R.S. Gupta, and R.S. Rana. 2006. Effect of soil salinity and soil water availability on growth and chemical composition of Sorghum halepense Plant Soil. 125:411- 416.
  67. Snapp, S. S., and C. Shennan. 2002. Effects of salinity on root growth and death dynamics of tomato (Lycopersican esculentum ). New Phytol. 131: 71- 77.
  68. Stephan, H., and K. G. Wall, .1997. Grain yield from spring sown Canadian wheat in saline rooting media, Can. J, Plant. Sci. 77(1):63-68.
  69. Taiz, L., E.Zeiger, I. M. Moller, and A. Murphy. 2015. Plant Physiology and Development. Sinauer Associates, Incorporated. 20p.
  70. Walkey, A., and I. A. Black .1934.An examination of the Degtjareffmethod for determining organic carbon in soils: Effect of variations in digestion conditions and of in organic soil constituents. Soil Science. 63:251-263
  71. Yang, Y.W., R. L. Newton, and F.R. Miller. 1990. Salinity tolerance in sorghum. I. Whole plant response to sodium chloride in S. Bicolor and S. halepense. Crop Sci. 30:775-781.
  72. Yang, Y.W., R.J. Newton, and F.R. Miller. 2000. Salinity tolerance in sorghum. I. Whole plant response to sodium chloride in bicolor and S. halepense. Crop Sci. 40:775- 781.
  73. Zidan, M.A., and H.S. Al-Zahrani. 2004. Effect of NaCl on the germination, growth and metabolic changes in sorghum. Pakistan. J. Scint. Indust. Res. 57 (12): 541- 543.