ارزیابی مدل DSSAT در برآورد بهره‌وری آب و عملکرد لوبیا چشم بلبلی در سطوح مختلف آب کاربردی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آبیاری و زهکشی، گروه علوم و مهندسی آب، واحد علوم وتحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

2 استاد، گروه علوم و مهندسی آب، واحد علوم وتحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

3 استاد، گروه مهندسی آب، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران.

4 دانشیار، گروه عمران آب، واحد شهرقدس، دانشگاه آزاد اسلامی، تهران، ایران.

چکیده

حبوبات بعد از گندم و برنج سهم عمده­ای در رژیم غذایی در کشور دارند. رشد این گیاهان خیلی سریع بوده و تنش خشکی نقش مهمی در عملکرد آن دارد. هدف از این بررسی، ارزیابی مدل DSSAT در شبیه‌سازی رشد و عملکرد لوبیای چشم بلبلی در شرایط سطوح مختلف آب کاربردی است. بدین منظور، طرح آزمایشی اسپلیت پلات در قالب طرح بلوک کامل تصادفی با سه تکرار در شهرستان کیاشهر و در دو سال 1396 و 1397 انجام شد. تیمارهای اصلی شامل آبیاری با سطوح کاربردی 40% ،60% ،80%، 100% و120% نیاز آبی گیاه و تیمار فرعی شامل آبیاری در مرحله رویشی، آبیاری در مرحله زایشی و آبیاری کامل بود. مقادیر شبیه­سازی و اندازه­گیری شده عملکرد دانه با استفاده از آماره‌های ضریب تبیین، آزمون t، ریشه میانگین مربعات خطا (RMSE) و ریشه میانگین مربعات خطای نرمال شده(nRMSE)، ارزیابی شد. نتایج نشان داد که تفاوت عملکرد دانه برآورد شده با عملکرد مشاهده شده (RMSE = 92 و nRMSE = 12.62%) قابل قبول بود. در مورد زیست‌توده نیز با توجه به شاخص‌های آماری ارزیابی، تفاوت مزبور در حد خوبی تبیین گردید. (RMSE = 130 وnRMSE = 5.91%). با استفاده از عملکرد دانه اندازه­گیری شده و اجزای بیلان آب شبیه­سازی شده از مدل DSSAT، مقدار بهره­وری آب مبتنی بر تبخیر و تعرق (WPET) حدود 33% کمتر از بهره­وری مبتنی بر تعرق (WPT) محاسبه شد. با توجه به نتایج تحقیق، تیمار آبیاری در هر دو مرحله رویشی و زایشی برابر 100% نیاز آبی بیشترین میزان تعرق (383 میلی­متر) را داشت و به عنوان مدیریت بهینه آبیاری در مراحل رشد انتخاب شد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of DSSAT Model in Estimating Cowpea Water Productivity and Yield at Different Levels of Applied Water

نویسندگان [English]

  • Faranak Baradaran-Hazaveh 1
  • Hossein Babazadeh 2
  • Ebrahim Amiri 3
  • Hossain ebrahimi 4
1 Ph.D. Candidate, Irrigation and Drainage, Department of Water Science and Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Professor, Department of Water Science and Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
3 Professor, Department of Water Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
4 Associate Professor, Department of Civil Engineering, Shahr-e-Qodss, Islamic Azad University, Tehran, Iran.
چکیده [English]

Pulses have a special position, after wheat and rice, in the Iranian people diet. The growth of these plants is very fast and water stress has an important effect on their yield. The objective of this study was to evaluate the DSSAT Model in simulating the growth and yield of cowpea under different levels of irrigation water. An experiment was conducted as a randomized complete block design (RCBD) with three replications in Kiashahr City, Iran, in the crop seasons of 2017 and 2018. The main treatments included irrigation with management of 40%, 60%, 80%, 100%, and 120% of plant water requirement and the three sub-treatments included irrigation at vegetative or reproductive stages, and full irrigation. In this experiment, the DSSAT simulation model was used to evaluate water efficiency and water balance components. Evaluation of simulated and measured values of grain yield was performed using the parameters of coefficient of determination, t-test, root mean square error (RMSE) and root mean square normalized error (nRMSE). The results showed that the difference between the predicted grain yield and the observed values was acceptable (RMSE=92 and nRMSE = 12.62%). Total biomass was also well simulated (RMSE=130 and nRMSE = 5.91%). Using the measured grain yield and water balance components simulated from the DSSAT model, the water productivity based on evapotranspiration (WPET) was about 33% lower than that based on transpiration (WPT). According to the results, irrigation with 100% water requirement at both vegetative and reproductive stages resulted in the highest transpiration (383mm), and was selected as the optimum irrigation management during the growing season.

کلیدواژه‌ها [English]

  • Crop modeling
  • Water management
  • Water stress
  1. ابراهیمی راد، ح.، و بابازاده، ح.، و امیری، ا.، و صدقی، ح. 1398. ارزیابی بیلان و بهره‌وری آب برنج تحت مدیریت‌های آبیاری و تراکم کاشت با استفاده از مدل-های Ceres-Rice و ORYZA2000. مجله آبیاری و زهکشی ایران, 13(1 ), 165-176. https://www.sid.ir/fa/journal/ViewPaper.aspx?id=489582
  2. امیدی، ف. و سپهری، ع. 1393. تأثیر کاربرد نیتروپروساید سدیم بار سطح برگ، رشد و کارایی مصرف آب ارقام لوبیا قرمز تحت تنش کم‌آبی. به زراعی کشاورزی، دوره 16، شماره 4، 855 – doi: 10.22059/jci.2015.53252
  3. سجادی، ز.، موسوی، س. و معاف پوریان، غ. 1394. نقش بافت و مقدار ماده آلی خاک (خاک‌برگ) بر توانایی Trichoderma longibrachiatum در تحریک رشد گیاه لوبیا قرمز و کنترل نماتد Meloidogyne javanica. دانش گیاه‌پزشکی ایران (علوم کشاورزی ایران), 46(2), 227-240. https://www.sid.ir/fa/journal/ViewPaper.aspx?id=268444
  4. سعادتی، ز.، دلبری، م.، امیری، ا.، پناهی، م.، رحیمیان ، م.ح. و قدسی، م. 1395 . ارزیابی مدل CERES-Wheat در شبیه­سازی عملکرد ارقام گندم تحت تیمارهای مختلف آبیاری. مجله حفاظت منابع آب‌وخاک. 5(3): 73 –
  5. صادقی‌پور، ا. و بنکدارهاشمی نیلگون. 1394. بررسی اثر کاربرد براسینولید در تحمل به خشکی لوبیا چشم بلبلی (Vigna unguiculata L. Walp). مجله علمی فیزیولوژی گیاهان زراعی. ۷ (۲۶) :۵۷-۷0.
  6. قوام سعیدی نوقابی، س.، یعقوب‌زاده، م.، شهیدی، ع.، حمامی، ح. و کلانکی، م. 1399. ارزیابی مدل 7  در شبیه‌سازی مراحل فنولوژیکی و عملکرد گندم رقم آنفارم 4 تحت سطوح مختلف آبیاری. نشریه آبیاری و زهکشی ایران, 14(2), 548-558.
  7. محمد فیضیان، م. همتی، ا.، اسدی رحمانی، ه. و عزیزی، خ. 1395. بررسی اثرات سویه‌های باکتری ریزوبیوم در عملکرد و اجزای عملکرد لوبیا چیتی در شرایط تنش خشکی. طرح تحقیقاتی. ایستگاه تحقیقات کشاورزی اقلید.
  8. وظیفه دوست، م.، و علی زاده، ا.، و کمالی، غ.، و فیضی، م. 1387. افزایش بهره‌وری آب کشاورزی در مزارع تحت آبیاری منطقه برخوار اصفهان. آب‌وخاک (علوم و صنایع کشاورزی)، 22(2), 484-495. https://www.sid.ir/fa/journal/ViewPaper.aspx?id=91265
  9. Ahmad, F.E. and Suliman, A.S.H. 2010. Effect of water stress applied at different stages of growth on seed yield and water-use efficiency of Cowpea. Agriculture and Biology Journal of North America, 1(4):534-540.
  10. Ahmadpour Abnvi, S., Ramroudi, M., Galavi, M. and Shamsaddin Saied, M. 2019. Effect of biological and chemical phosphorus fertilizer on yield and yield components of safflower (Carthamus tinctorius L.) under low irrigation conditions. Journal of Agricultural Science and Sustainable Production, 29(1):269-284. ‏
  11. Akinbile, C.O. 2020. Crop water requirements, biomass and grain yields estimation for upland rice using CROPWAT, AQUACROP and CERES simulation models. Agricultural Engineering International: CIGR Journal, 22(2):1-20.
  12. Akponikpe, P.B., Gerard, B., Michels, K. and Bielders, C. 2010. Use of the APSIM model in longterm simulation to support decision making regarding nitrogen management for pearl millet in the Sahel. European Journal of Agronomy, 32 (2):144–154.
  13. Allen, R., Pereira, L.A, Raes, D., and Smith, M. 1998. FAO Irrigation and Drainage Paper No. 56. FAO, Rome, Italy.
  14. Bastos, E.A., Nascimento, S.P., Silva, E.M., Filho, F.R.F. and Gomide, R.L. 2011. Identification of cowpea genotypes for drought tolerance. Revista Ciência Agronômica, 42(1):100-107.
  15. Bouman, B. A. M. and Van Laar, H.H. 2006. Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions, Agricultural Systems, 87:249–273.
  16. Ceritoğlu, M. and Erman, M. 2020. Determination of some agronomic traits and their correlation with yield components in cowpea. Selcuk Journal of Agriculture and Food Sciences, 34(2):154-161.‏
  17. Daryanto, S., Wang, L. and Jacinthe, P.A. 2017. Global synthesis of drought effects on cereal, legume, tuber and root crops production: a review. Agric. Water Management, 179:18–33.
  18. Doorenbos, J. and Pruitt, WO. 1977. Guidelines for predicting crop water requirements. FAO. Irrigation and Drainage, Italy, Rome, Paper No. 24.FAO. 2010. FAOSTAT. Available in http://faostat.fao.org/[28 May 2010].
  19. Fanaei, H.R., Azmal, H. and Piri, I. 2017. Effect of biological and chemical fertilizers on oil, seed yield and some agronomic traits of safflower under different irrigation regimes. Journal of Agroecology 8(4): 551-566.
  20. Fatokun, C.A., Boukar, O., Muranaka, S., 2012. Evaluation of cowpea (Vigna unguiculata (L.) Walp.) germplasm lines for tolerance to drought. Plant Genet. Res. 10:171–176.
  21. Frahm, M.A., Rosas, J.C., Mayek-Perez, M., Lopez- Salinas, E., Acosta-Gallegos, J.A. and Kelly, J.D. 2004. Breeding beans for resistance to terminal drought in the lowland tropics. Euphytica, 136(2): 223-232.
  22. Hoogenboom, G., Jones, J. W., Porter, C. H., Wilkens, P. W., Boote, K. J., Batchelor, W. D., Hunt, L. A. and Tsuji, G. Y. 2003. Decision Support System for Agrotechnology Transfer version 4.0. Volume 1: Overview. University of Hawaii, Honolulu, HI, 2.
  23. Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J. and Ritchie, J.T. 2003. The CERES-WHEAT cropping system model. European Journal of Agronom, 18:235-265.
  24. Kanda, E. K., Senzanje, A. and Mabhaudhi, T. 2020. Calibration and validation of the Aqua Crop model for full and deficit irrigated cowpea (Vigna unguiculata (L.) Walp). Physics and Chemistry of the Earth, Parts A/B/C, 102941.
  25. Lomeling, D. and Huria, S.J. 2020. Using the DSSAT-CROPGRO model to simulate gross margin and N-leaching of cowpea fertigated with human urine. Archives of Agriculture and Environmental Science, 5(1): 1-10
  26. Lomeling, D., Kenyi, M.M., Abass, A.A., Otwari, S.M., Khater, Y and .M, 2014. Using the CROPGRO model to predict phenology of cowpea under rain-fed conditions. International Journal of Plant & Soil Science, 3:824-844.
  27. Mayek-Perez, N., Garica-Espinosa, R., Lopez-Castanda, C., Acosta-Gallegos, J.A. and Simpson, J. 2002. Water relations, histopathology and growth of common bean (Phaseolus vulgaris L.) during pathogenesis of Macrophomina phaseolina under drought stress. Physiological and Molecula Plant Pathology 60: 158-195.
  28. Nouralinezhad, A.R., Babazadeh, H., Amiri, E. and Sedghi, H. 2019. The yield evaluation and water productivity on common bean and cowpea in irrigation management condition and nitrogen fertilizer. Iranian Journal of Irrigation & Drainage, 13(4):1010-1026. ‏
  29. Nunes, H. G. G. C., Farias, V. D. S., Sousa, D. P., Costa, D. L. P., Pinto, J. V. N., Moura, V. B. and Souza, P. J. O. P. 2021. Parameterization of the AquaCrop model for cowpea and assessing the impact of sowing dates normally used on yield. Agricultural Water Management, 252, 106880.
  30. Passioura, J. 2006. Increasing crop productivity when water is scarce-from breeding to field management. Agriculture Water Management, 80:176-196.
  31. Samarah, N.H. 2005. Effects of drought stress on growth and yield of barley. Agronomy for Sustainable Development, 25:145-149.
  32. Singh A.K., Tripathy R. and Chopra. U.K. 2008. Evaluation of CERES-Wheat and CropSyst models for water– nitrogen interactions in wheat crop. Agricultural Water Management, 95:776-786.
  33. Singh R., Van Dam, J.C. and Feddes, R.A. 2006. Water productivity analysis of irrigated crops in Sirsa district, India, Agriculture Water Management, 82:253-278
  34. Smith M. 1992. CROPWAT, a computer program for irrigation planning and management. FAO irrigation and Drainage, Italy, Rome. Paper No. 26.
  35. Soler, C.M.T., Sentelhas, P.C., and Hoogenboom, G. 2007. Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment. European Journal of Agronomy, 27(2-4):165-177.
  36. Stoyanov, Z.Z. 2005. Effects of water stress on leaf water relations of young beans. Central Eurpean Agriculture, 6(1):5-14.
  37. Tankari, M., Wang, C., Ma, H., Li, X., Li, L., Soothar, R.K., Cui, N., Zaman-Allah, M., Hao, W., Liu, F. and Wang, Y., 2021. Drought priming improved water status, photosynthesis and water productivity of cowpea during post-anthesis drought stress. Agricultural Water Management245:106565
  38. Zalaghi, A., Marashi, S.K. and Mojaddam, M. 2020. Investigation Effect of Different Level of Vermicompost and Manure on Seed Yield and Its Components of Cowpea (Vigna unguiculata L.). Journal of Crop Nutrition Science, 6(2):44-57.‏
  39. Zhao, Y., Mao, X. and Shukla, M.K. 2020. A modified SWAP model for soil water and heat dynamics and seed–maize growth under film mulching. Agricultural and Forest Meteorology, 292, 108127
  40. Zwart, S.J. and Bastiaanssen, W.G.M. 2004. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agricultural Water Management, 69(2):115-133.