اثر سطوح مختلف شوری آب بر ویژگی‌های جوانه‌زنی دو رقم کینوا (Chenopodium quinoa Willd)

نوع مقاله : مقاله پژوهشی

نویسنده

عضو هیئت علمی بخش تحقیقات کشت گلخانه ای، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان تهران، سازمان تحقیقات، آموزش و ترویج

چکیده

به ­منظور بررسی تنش شوری آب بر ویژگی­های جوانه­ زنی بذر کینوا، یک آزمایش فاکتوریل در قالب طرح آماری کامل تصادفی با 10 تیمار و سه تکرار در سال 1397 در مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان تهران اجرا شد. عامل شوری آب در پنج سطح (آب­مقطر، 5، 10، 15 و 20 دسی­زیمنس بر متر) و عامل رقم در دو سطح (تیتیکاکا و ردکاردینا) در نظر گرفته شد. اثر شوری آب و رقم و اثر متقابل آنها بر صفات درصد و سرعت جوانه­زنی، طول ساقه­ چه، ریشه­ چه و گیاه­چه، شاخص بنیه و شاخص تحمل ساقه­ چه و ریشه ­چه معنی­دار بود. تنش شوری کلیه صفات اندازه­گیری شده را به­طور معنی­داری کاهش داد که این کاهش در رقم ردکاردینا بیشتر از رقم تیتیکاکا بود. تنش شوری آب تا سطح پنج دسی­زیمنس بر متر تاثیر معنی­داری بر درصد جوانه­زنی بذر رقم تیتیکاکا نداشت، در­حالی که در مورد رقم ردکاردینا تفاوت درصد جوانه­زنی بین سطوح شاهد آب مقطر و شوری پنج دسی­زیمنس بر متر معنی­دار بود. بیشترین درصد جوانه­زنی به میزان 100% از تیمار بدون تنش شوری (تیمار شاهد) در هر دو رقم تیتیکاکا و ردکاردینا به­دست آمد، در­حالی که درصد جوانه­زنی در تنش شوری آب 5، 10، 15 و 20 دسی­زیمنس بر متر در رقم تیتیکاکا 1/4%، 4/9%، 14/3% و 21% و در رقم ردکاردینا به ترتیب2/6%، 6/6%، 18/3% و 29/7% نسبت به شاهد کاهش یافت. طول ساقه­چه ارقام در سطح شوری 5، 10، 15 و 20 دسی­زیمنس بر متر نسبت به تیمار شاهد به ­ترتیب 6/8%، 14/0%، 27/6% و 39/6% برای رقم تیتیکاکا و 7/3%، 19/9%، 43/7% و 53/8% برای ردکاردینا نسبت به شاهد کاهش نشان داد که این درصد کاهش برای طول ریشه­چه رقم تیتیکاکا، 2/1%، 12/6%، 32/6% و 44/2% و در رقم ردکاردینا 6/4%، 21/2%، 38/2% و 57/9% بود. تنش شوری آب 5، 10، 15 و 20 دسی­زیمنس بر متر موجب شد تا وزن خشک گیاهچه رقم تیتیکاکا 12/7%، 27/1%، 36/8% و 46/6% و در رقم ردکاردینا 11/4%، 27/8%، 45/0% و 57/1% کاهش یابد. نتایج به­دست آمده حاکی از حساسیت بیشتر رقم ردکاردینا به تنش شوری آب در مرحله جوانه­زنی در مقایسه با رقم تیتیکاکا بود.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Different Water Salinity Levels on Germination Characteristics of Two Quinoa Cultivars (Chenopodium quinoa Willd)

نویسنده [English]

  • Mohsen Seilsepour
Greenhouse Cultivation Research Department, Tehran Agricultural and Natural Resources Research and Education Center, AREEO, Varamin, Iran
چکیده [English]

In order to investigate effects of water salinity on germination characteristics of quinoa (Chenopodium quinoa Willd), an experiment was conducted in a factorial and randomized complete blocks design with 10 treatments and three replication, in 2020. Salinity factor was considered at five levels (zero, 5, 10, 15 and 20 dS­/­m) and cultivars at two levels (Titicaca and Redcardina). Effects of salinity, cultivar, and their interaction were significant on germination percentage and its rate, length of shoot, root and seedling, vigor index, stem and root tolerance index. All characteristics were significantly reduced by salinity stress, with higher reduction in Redcardina than Titicaca. Salinity stress up to 5 dS/m had no significant effect on seed germination percentage of Titicaca, while in Redcardina, difference in germination percentage between distilled water (control) and salinity of 5 dS/m was significant. The highest germination percentage (100%) was obtained in treatment without salinity for both Titicaca and Redcardina. Germination percentage at salinity levels of 5, 10, 15 and 20 dS/m in Titicaca decreased by 1.4%, 4.9%, 14.3%, and 21%, and in Redcardina, by 2.6%, 6.6%, 18.3%, and 29.7% compared to the control. Stem length of cultivars at salinity levels of 5, 10, 15 and 20 dS/m compared to the control treatment were reduced by 6.8%, 14%, 27.6%, and 39.6% for Titicaca and 7.3%, 19.9%, 43.7% and 53.8% for Redcardina, respectively. This percentage reduction for root length of Titicaca was 2.1%, 12.6%, 32.6%, and 44.2% and for Redcardina was 6.4%, 21.2%, 38.2% and 57.9%. Salinity stress of 5, 10, 15 and 20 dS/m caused the dry weight of seedlings of Titicaca to decrease by 12.7%, 27.1%, 36.8% and 46.6% and in Redcardina by 11.4%, 27.8%, 45%, and 57.1%. Based on the results, Redcardina cultivar was more sensitive to salinity stress during germination than Titicaca.

کلیدواژه‌ها [English]

  • Germination percentage
  • Quinoa Redcardina cultivar
  • Quinoa Titicaca cultivar
  • Seedling dry weight
  1. انصاری اردلی، ی.، نبی پور, م.، روشنفکر, ح و باقری, م. 1400. ارزیابی ارقام کینوا (.Chenopodium quinoa Wild) در شرایط شور به­کمک شاخص‌های جوانه‌زنی در محیط کنترل شده. مجله تنش‌های محیطی در علوم زراعی، جلد 14، شماره 2، صفحات 475-485
  2. باقری، م.، عنافجه، ز.، طاهریان، م.، امامی، ع.، مولائی.، ع و کشاورز، س. 1399. ارزیابی سازگاری و پایداری عملکرد دانه ژنوتیپ­های منتخب کینوا در نظام­های کشت بهاره در مناطق سرد و معتدل، مجله علوم زراعی ایران. جلد 22، شماره 4، صفحات 376-387
  3. جمالی، س و شریفان، ح. 1397. بررسی تأثیر سطوح مختلف شوری بر عملکرد و اجزای عملکرد گیاه کینوا ( Titicaca). نشریه پژوهش­های حفاظت از آب و خاک. جلد 25، شماره 2، صفحات 251-266
  4. رحیمی، ز و کافی، م. 1389. بررسی تأثیر سطوح مختلف شوری بر ویژگی­های جوانه­زنی خرفه (Portulaca oleracea L). مجله تحقیقات محصولات زراعی ایران. جلد 8، شماره 4، صفحات 615-621
  5. سلطانی، ع.، گالشی، س.، زینلی، ا. و لطیفی، ن. 1380. اثر ذخیره بذر بر جوانه­زنی و رشد نخود تحت تأثیر شوری و اندازه بذر. علوم و تکنولوژی بذر. شماره 2، صفحات 51-60.
  6. شهیدی، ر.، کامکار، ب.، لطیفی، ن و گالشی، س. 1398. تاثیر سطوح و دوره­های متفاوت اعمال تنش شوری بر عملکرد و اجزای عملکرد دانه جو بدون پوشینه (.Hordeum vulgare L). مجله تولید گیاهان زراعی، دوره 3، شماره 2، صفحات 49-63
  7. Adolf, V. I., Jacobsen, S. E., and Shabala, S. 2013. Salt tolerance mechanisms in quinoa (Chenopodium quinoa). Environmental and Experimental Botany. 92:43–54.
  8. Akbari Moghaddam, H., Galavi, M., Ghanbari. A. and Panjehkeh, N. 2011. Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia Journal of Sciences. 9: 43-50.
  9. Barrett- Lennard, E. G. 2003. The interaction between waterlogging and salinity in higher plants: Causes, consequences and implications. Plant and Soil. 253: 35-54.
  10. Finch-Savage, W.E., Dent, K.C. and Clark, L.J. 2004. Soak conditions and temperature following sowing in fluece the response of maize (Zea mays) seeds to on-farm priming (Pre-Sowing Seed Soak). Field Crops Research. 90: 361- 374.
  11. Ghoulam, C. and Fares, K. 2001. Effect of salinity on seed germination and early seedling growth of sugar beet (Beta vulgaris) Seed Scince. and Technolog. 29: 357-364.
  12. Hag ghani, M., Saffari, M. and Magsoudi-Moud, A.A. 2008. Effect of different levels of Nacl salinity on germination and Seedling growth of safflower cultivars (Carthamus tinctorius). Journal of Agriculture Science. 45: 449- 458.
  13. Hariadi Y, Marandon K, Tian Y, Jacobsen S. E. and Shabala. S. 2011. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of Experimental Botany.62: 185-193.
  14. Jacobsen S. E., Mujica. A and Jensen. R. 2003.  Resistance of quinoa (Chenopodium quinoa Willd.) to adverse, abiotic factors. Journal of Experience Botany. 54: 21-21.
  15. Jacobsen, S. , Liu, F and Jensen C. R. 2009. Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Scientia Horticulturae, 122(2), 281-287.
  16. Jacobsen, S. E., A. Mujica, and Jensen C. 2003. The resistance of quinoa (Chenopodium quinoa) to adverse abiotic factors. Food Reviews International 19 (1–2):99–109.
  17. Jacobsen, S. E., Quispe, H and Mujica, A. 2001. Quinoa: an alternative crop for saline soils in the Andes. Scientist and Farmer-Partners in Research for the 21st Century. CIP Program Report, 2000, 403-408.
  18. Koyro, H. W., Lieth, H and S. Eisa S. 2008. Salt tolerance of chenopodium quinoa willd. Grains of the Andes: Influence of salinity on biomass production, yield, and composition of reserves in the seeds, water and solute relations. Tasks for Vegetation Sciences, 43, 133-145.
  19. Koyro, H.W and S. Eisa, S. 2008. Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Plant and Soil. 302: 79-90.
  20. Läuchli, A., and S. Grattan. 2007. Plant growth and development under salinity stress. In Advances in molecular breedingtoward drought and salt tolerant crops, ed. M. A. Jenks, P. M. Hasegawa and S. M. Jain, 1–32. Netherlands: Springer. EBook ISBN: 978-1-4020-5578-2.
  21. Long, N. V. 2016. Effects of salinity stress on growth and yield of quinoa. Vietnam Journal of Agricultural Sciences 14(3):321–27.
  22. Maleki, P., Bahrami, H.A., Saadat, S., Sharifi, F., Dehghany, F., 2016. Germination of Quinoa (Chenopodium quinoa Willd.) under Salinity Stress. Quinoa for Future Food and Nutrition Security in Marginal Environments. ICBA, Dubai.
  23. Massai, R., Remorin, D. and Tattini, M. 2004. Gas exchange, water relation and osmotic adjustment in two scion/rootstock combination of prunes under various salinity concentration. Plant and Soil. 259: 153- 162.
  24. Misra, N. and Dwivedi, U.N. 2004. Genotypic difference in salinity tolerance of greengram cultivars. Plant Sci, No, 166. pp: 1135-1142.
  25. Munns, R. 2005. Genes and salt tolerance: bringing them together. New Phytologist, 167(3): 645–663.
  26. Munns, R. and Tester, M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology. 59, 651-681.
  27. Noor, E., F. M. Azhar. And, Khan, A. L. 2001. Differences in responses of gossypium hirsutum varieties to NaCl salinity at seedling stage. International Journal of Agriculture and Biology. 3 (4): 345-347.
  28. Panuccio M.R, Jacobsen S.E, Akhtar S.S, and Muscolo A. 2014. Effect of saline water on seed germination and earlyseedling growth of the halophyte quinoa. AoB PLANTS 6: plu047;
  29. Panuccio, M. R., Jacobsen, S. E., Akhtar, S. S. and A. Muscolo. 2014. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants. 6,212-218.
  30. Prado, F. E., C. Boero, M. Gallardo, and Gonzalez. J. A. 2000. Effect of NaCl on germination, growth, and soluble sugarcontent in Chenopodium quinoa Willd. Botanical Bulletin of Academia Sinica. 41:27–34.
  31. Rengasamy, P. 2010. Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 37: 613-620.
  32. Repo-Carrasco, R., Espinoza, C and Jacobsen S. E. 2003. Nutritional Value and Use of the Andean Crops Quinoa (Chenopodium quinoa) and kaniwa (Chenopodium pallidicaule). Food Reviews International, 19, 179-189.
  33. Ruffino, A. M. C., Rosa, M., Hilal, M., Gonzalez, J. A and Prado F. E. 2010. The role of cotyledon metabolism in the establishment of quinoa (Chenopodium quinoa) seedlings growing under salinity. Plant and Soil, 326, 213-224.
  34. Ruiz, K., S. Biondi, E. Martínez, F. Orsini, F. Antognoni, and S. E. Jacobsen. 2016. Quinoa–A model crop for understanding salt-tolerance mechanisms in halophytes. Plant Biosystems-An International Journal Dealing with All Aspects of Plant Biology 150 (2):357–71.
  35. Shabala, S., Hariadi, Y., and Jacobsen S. E. 2013. Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density. Journal of Plant Physiol. 1; 170(10):906-14.
  36. Trognitz, B. R. 2003. Prospects of breeding quinoa for tolerance to abiotic stress. Food Reviews International. 19: 129-137.

37.              Turhan, H., and Ayaz, C. 2004. Effect of salinity on seedling emergence and growth of sunflower (Helianthus annuus L.) cultivars. International Journal of Agricultural Biological, 6: 149-152.

  1. Wilson C., Read, J.J and Abo-Kassem. E. 2004. Effect of mixed-salt salinity on growth and ion relations of a quinoa and a wheat variety. Journal of Plant Nutrition. 25: 2689 – 2704