اثر بیوچار حاصل از منابع مختلف بر عملکرد و کارایی مصرف آب گندم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق دکتری فیزیک و حفاظت خاک، دانشکده کشاورزی، دانشگاه شهرکرد، شهر کرد، ایران.

2 استادیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران.

3 استاد گروه علوم و مهندسی خاک، دانشگاه ولی عصر (عج) رفسنجان، رفسنجان، ایران.

چکیده

افزودن بقایای آلی به صورت بیوچار به خاک با هدف بهسازی آن، رهیافت جدیدی در مدیریت بقایای آلی است. در پژوهش­های قبلی، بیشترین تمرکز محققان به مقدار بیوچار اضافه‌شده به خاک بوده است. این تحقیق با هدف بررسی ویژگی‌های بیوچار­های تهیه‌شده از منابع مختلف (کاه گندم، ورمی­ کمپوست و چوب درخت زردآلو) و اثرات مقادیر و اندازه ذرات آن بیوچارها بر عملکرد و کارایی مصرف آب (WUE) گندم انجام شد. در آزمایشی فاکتوریل با طرح پایه بلوک­های کامل تصادفی با سه تکرار، اثر سه بیوچار مذکور در مقادیر 0/5٪ (R11/5% (R2) و 3% (R3) وزنی با اندازه ذرات 0/5 (S1)، 1-0/5 (S2) و 2-1 (S3) میلی­متر در دو سال زراعی متوالی بررسی شد. بیوچارهای مورد مطالعه فقط در سال اول تا عمق 15-0 سانتی­متر به خاک اضافه شدند. در هر تکرار یک کرت شاهد هم در نظر گرفته شد. اثرات متقابل فاکتورهای آزمایش (به‌جز اثر سال در مقدار بیوچار) بر عملکرد و کارایی مصرف آب معنی­دار بود. مقایسه میانگین عملکرد و کارایی مصرف آب در هر نوع بیوچار نشان داد که در سال اول و دوم، تیمار بیوچار کاه گندم در مقدار  R3و اندازه ذرات S2، بیشترین عملکرد به ترتیب 5200 و 6664  کیلوگرم در هکتار و کارایی مصرف آب به ترتیب 1/6 و 2/1 کیلوگرم بر مترمکعب را داشت. در سال اول، در تیمارهای بیوچار ورمی ­کمپوست، بیشترین عملکرد (4517 کیلوگرم در هکتار) و کارآیی مصرف آب (1/4 کیلوگرم در مترمکعب) در مقدار R2 با اندازه ذرات S3 مشاهده گردید. در همان سال، در بین تیمارهای بیوچار چوب درخت زردآلو، تیمار با مقدارR3  با اندازه ذرات  S3بیشترین عملکرد (3871 کیلوگرم در هکتار) و کارایی مصرف آب (1/2 کیلوگرم بر مترمکعب) را داشت. در سال دوم، در تیمار بیوچار ورمی­ کمپوست، بیشترین عملکرد (6615 کیلوگرم در هکتار) و کارایی مصرف آب ( 2/04 کیلوگرم بر مترمکعب) در مقدار R3  با اندازه ذرات S2 و در بیوچار چوب درخت زردآلو، بیشترین عملکرد (5263 کیلوگرم در هکتار) و کارایی مصرف آب ( 1/6 کیلوگرم بر مترمکعب) در مقدار R2 با اندازه ذرات S3 آن بیوچار­ مشاهده شد. در بین تمام تیمارهای مورد مطالعه، بیشترین عملکرد و کارایی مصرف آب (در هر دو سال) در بیوچار گندم با مقدار  R3و با اندازه ذرات بیوچار S2 مشاهده شد. نتایج نشان داد که علاوه بر نوع بیوچار، اثر متقابل مقدار و اندازه ذرات بیوچار، اثر تعیین کننده­ای در افزایش میزان عملکرد و کارایی مصرف آب داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Biochar Obtained from Different Sources on Yield and Water Use Efficiency of Wheat

نویسندگان [English]

  • hassan osooli 1
  • Ahmad Karimi 2
  • Hossin Shirani 3
1 Former PhD student, Department of Soil Sciences, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
2 Assistant Professor, Department of Soil Sciences, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.
3 Professor, Department of Soil Science, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
چکیده [English]

The use of organic waste in the form of biochar in order to ameliorate soil is a novel approach in the management of organic waste. In previous studies, researchers mostly focused on the amount of biochar that was added to the soil. However, the aim of this study was to investigate the characteristics of biochars prepared from different feedstock (wheat straw, vermicompost and apricot firewood) and the interaction effects of amounts and particle sizes of biochars on yield and water use efficiency (WUE) of winter wheat. In a factorial experiment with a randomized complete block design with three replications, the effects of these three biochars in the amount of 0.5% (R1), 1.5% (R2) and 3% (R3) with a particle size of ≤0.5 (S1), 0.5-1 (S2) and 1-2 (S3) mm were evaluated in two consecutive cropping years. The studied biochar were added to the soil only in the first year to a depth of 0-15 cm. A control plot was considered in each replication. The interactions of experimental factors (except interaction effect of year and biochar amount) on yield and WUE were significant. Comparison of average yield and WUE in each type of biochar showed that, in the first and second year, wheat straw biochar treatment of R3 S2 had the highest yield (5,200 kg ha-1 and 6664.3 kg ha-1, respectively) and WUE (1.6 kg m-3 and 2.1 kg m-3, respectively). In the first year, in vermicompost biochar treatments, the highest yield (4517.7 kg ha-1) and WUE (1.4 kg m-3) were observed in the R2 S3. In the same year, in apricot wood biochar, treatment R3 S3 had the highest yield (3871.7 kg ha-1) and WUE (1.2 kg m-3). In the second year, in vermicompost treatments, the highest yield (6615.7 kg ha-1) and WUE (2.04 kg m-3)  was observed in the R3 S2 and, in the same year, in apricot wood biochar treatments, the highest yield (5263.7 kg ha-1) and WUE (1.6 kg m-3) was observed in the R2 S3. The highest yield and WUE (in the two years) was observed in wheat straw biochar with the R3 S2. These results showed that in addition to the type of biochar, the interaction of the amount and size of biochar particles had a decisive effect on increasing the yield and water use efficiency of wheat.

کلیدواژه‌ها [English]

  • Amount and size of biochar
  • calcareous soil
  • Organic waste
  • Vermicompost
  1. احمدی، ک.، عبادزاده، ح.، حاتمی، ف.، عبد­شاه، ه.، و کاظمیان، آ. a آمار نامه کشاورزی سال 1398. جلد اول: محصولات زراعی. وزارت جهاد کشاورزی، 97 صفحه.
  2. احمدی، ک.، عبادزاده، ح.، حاتمی، ف.، حسین­پور، ر.، و عبد­شاه، ه. b آمار نامه کشاورزی سال 1398. جلد سوم: محصولات باغی. وزارت جهاد کشاورزی، 163 صفحه.
  3. بی‌نام. 1394. کاشت گندم در مناطق سرد «ویژه گندم دیم و آبی». موسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، معاونت آموزش ترویج، نشر آموزش کشاورزی، 39 صفحه.
  4. سلطانی، ا. 1392. کاربرد نرم‌افزار SAS در تجزیه­های آماری (برای رشته­های کشاورزی). انتشارات جهاد دانشگاهی، دانشگاه فردوسی مشهد،100 صفحه.
  5. شیرانی، ح.، حاج عباسی، م.، افیونی، م.، و همت، ع. ۱۳۸۹. تأثیر سیستم‌های خاک‌ورزی و کود آلی بر مقاومت فروروی خاک تحت کشت ذرت. مجله علوم آب ‌و خاک، ۱۴ (۵۱): ۱۴۱- ۱۵۵.
  6. ملکوتی، م.، و غیبی، م . تعیین حد بحرانی عناصر غذایی محصولات استراتژیک و توصیه کودی در کشور. موسسه تحقیقان خاک و آب، 40 صفحه.
  7. Ahmed, A., Gariepy, Y., and Raghavan, V. 2017. Influence of wood-derived biochar on the compactibility and strength of silt loam soil. International Agrophysics, 31(2): 149.
  8. ‏Alburquerque, J.A., Calero, J.M., Barrón, V., Torrent, J., Del Campillo, M , Gallardo, A. and Villar, R. 2014. Effects of biochars produced from different feedstocks on soil properties and sunflower growth. Journal of Plant Nutrition and Soil Science, 177(1): 16-25.‏
  9. Ali, K., Wang, X., Riaz, M., Islam, B., Khan, Z.H., Shah, F., Munsif, F., and Haq, S.I.U. 2019. Biochar: an eco-friendly approach to improve wheat yield and associated soil properties on sustainable basis. Pakistan Journal of Botany, 51(4): 1255-1261.‏
  10. Alizadeh, A., and Kamali, G.H. 2007. Crops water requirements in IRAN. Emam Reza University, Mashhad. 227 pp.
  11. Aller, D., Bakshi, S., and Laird, D.A. Modified method for proximate analysis of biochars. Journal of Analytical and Applied Pyrolysis, 124: 335-342.‏
  12. Baiamonte, G., Pasquale, C.D., Marsala, V., Cimò, G., Moragues-Saitua, G.L., Arias, G.A., and Bengoetxea, G.N. Effects of biochar and wood ash on soil hydraulic properties: A field experiment involving contrasting temperate soils. Geoderma, 305:144–152.
  13. Carter, M.R., and Gregorich, E.G. 2007. Soil sampling and methods of analysis. CRC press.‏1240 pp.
  14. Dokoohaki, H., Miguez, F.E., Laird, D., and Dumortier, J. 2019. Where should we apply biochar? Environmental Research Letters, 14(4): 044005.‏
  15. Du, Z., Xiao, Y., Qi, X., Liu, Y., Fan, X., and Li, Z. 2018. Peanut-shell biochar and biogas slurry improve soil properties in the North China Plain: a four-year field study. Scientific reports, 8(1): 1-9.‏
  16. Duiker, S.W., Flanagan, D.C., and Lal, R. 2001. Erodibility and infiltration characteristics of five major soils of southwest Spain. Catena, 45(2): 103-121.
  17. 1988. Salt-affected soils and their management. FAO soils bulletin 39. Rome. Italy.
  18. Gao, Y., Shao, G., Lu, J., Zhang, K., Wu, S. and Wang, Z. 2020. Effects of biochar application on crop water use efficiency depend on experimental conditions: A meta-analysis. Field Crops Research, 249: 107763.
  19. Gee, G.W., and Bauder, J.W. 1986. Particle-size analysis1. Methods of soil analysis: Part 1—Physical and mineralogical methods.
  20. Gupta, M., Yang, J., and Roy, C. 2002. Density of softwood bark and softwood char: procedural calibration and measurement by water soaking and kerosene immersion method. Fuel, 81(10): 1379-1384.
  21. He, X., Geng, Z., She, D., Zhang, B., and Gao, H. 2011. Implications of production and agricultural utilization of biochar and its international dynamic. Transactions of the Chinese Society of Agricultural Engineering, 27(2): 1-7.‏
  22. Jeffery, S., Verheijen, F., Van der Velde, M., and Bastos, A. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems and Environment, 144: 175–187.
  23. Jones J.B. 1999. Soil analysis handbook of reference methods. CRC Press, 382 pp.
  24. Kartika, K., Lakitan, B., Wijaya, A., Kadir, S., Widuri, L. I., Siaga, E., and Meihana, M. (2018). Effects of particle size and application rate of rice-husk biochar on chemical properties of tropical wetland soil, rice growth and yield. Australian Journal of Crop Science, 12(5): 817–826.
  25. Karimi, A., Moezzi, A., Chorom, M., and Enayatizamir, N. 2020. Application of biochar changed the status of nutrients and biological activity in a calcareous soil. Journal of Soil Science and Plant Nutrition, 20(2): 450-459.‏
  26. Lehmann, J., Gaunt, J., and Rondon, M. 2006. Bio-char sequestration in terrestrial ecosystems–a review. Mitigation and adaptation strategies for global change, 11(2): 403-427.‏
  27. Liao, W., and Thomas, S.C. 2019. Biochar particle size and post-pyrolysis mechanical processing affect soil pH, water retention capacity, and plant performance. Soil Systems, 3(1): 14.‏
  28. Li, Z., Qi, X., Fan, X., Wu, H., Du, Z., Li, P., and Lü, M. 2015. Influences of biochars on growth, yield, water use efficiency and root morphology of winter wheat. Transactions of the Chinese Society of Agricultural Engineering, 31(12): 119-124
  29. Liu, X., Liu, M.D., Gao, Z.G. and Yang, D. 2013. Effect of different biochars on yield and yield components of wheat on different soils. Advanced Materials Research, 726: 2665-2669.
  30. Lusiba, S., Odhiambo, J., and Ogola, J. 2017. Effect of biochar and phosphorus fertilizer application on soil fertility: soil physical and chemical properties. Archives of Agronomy and Soil Science, 63(4): 477-490.‏
  31. Paneque, M., José, M., Franco-Navarro, J.D., Colmenero-Flores, J.M., and Knicker, H. 2016. Effect of biochar amendment on morphology, productivity and water relations of sunflower plants under non-irrigation conditions. Catena, 147: 280-287.‏
  32. Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R., and Lehmann, J. 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48(3): 271-284.
  33. Randolph, P., Bansode, R.R., Hassan, O.A., Rehrah, D.J., Ravella, R., Reddy, M.R., Watts, D.W., Novak J.M., and Ahmedna, M. 2017. Effect of biochars produced from solid organic municipal waste on soil quality parameters. Journal of environmental management, 192: 271-280.‏
  34. Sato, M.K., de Lima, H.V., Costa, A.N., Rodrigues, S., Pedroso, A.J.S., and de Freitas Maia, C.M.B. 2019. Biochar from Acai agroindustry waste: Study of pyrolysis conditions. Waste Management, 96: 158-167.‏
  35. Salgado, R., Rodriguez, P.P., Armesto, A.G., Novoa-Munoz, J.C., Arias-Estevez M., and Fernandez-Calvino, D. 2016. Cu retention in an acid soil amended with perlite winery waste. Environmental Science and Pollution Research, 23: 3789–3798.
  36. Smith, K.A. Soil and environmental analysis: physical methods, revised, and expanded. CRC Press.‏651 pp.
  37. Tan, Z., Lin, C.S., Ji, X., and Rainey, T.J. 2017. Returning biochar to fields: A review. Applied Soil Ecology, 116: 1-11.‏
  38. Trifunovic, B., Gonzales, H. B., Ravi, S., Sharratt, B.S., and Mohanty, S. K. 2018. Dynamic effects of biochar concentration and particle size on hydraulic properties of sand. Land Degradation and Development, 29(4): 884-893.‏
  39. Verheijen, F. G., Zhuravel, A., Silva, F. C., Amaro, A., Ben-Hur, M., and Keizer, J. J. 2019. The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment. Geoderma, 347:194-202.‏
  40. Weber, K., and Quicker, P. 2018. Properties of biochar. Fuel, 217: 240-261.‏
  41. Yuan, J.H., Xu, R.K., and Zhang, H. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource technology, 102(3): 3488-3497.
  42. Zhang, Q., Song, Y., Wu, Z., Yan, X., Gunina, A., Kuzyakov, Y., and Xiong, Z. 2020. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation. Journal of Cleaner Production, 242, 118435.‏