نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی دانشگاه اردکان، اردکان، یزد، ایران.

2 استادیار مرکز ملی تحقیقات شوری، سازمان تحقیقات، آموزش و ترویج کشاورزی، یزد، ایران.

3 استادیار گروه علوم باغبانی دانشگاه اردکان

4 استادیار گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی دانشگاه اردکان، اردکان، یزد، ایران.

چکیده

 
به­منظورارزیابیاثر تنش شوری بر برخی از ویژگی­های رشدیژنوتیپ­هایانتخاب شده انار از مناطقی با آب و خاک شور، آزمایشی به­صورت فاکتوریل با طرح کاملاً تصادفیبادوعاملژنوتیپ و رقمدرسهسطح (پوست سیاه اردکان‘، ’چاه افضلو رباب نیریز‘) و شوری آب آبیاری درپنج سطح (یک، سه، پنج، هفت و نه دسی­زیمنسبر­متر)، و با چهار تکرار در سال 1397-1396 در سایت مرکز ملی تحقیقات شوریایران انجام شد.نتایج نشان داد که نوع ژنوتیپ و سطوح شوری بر تغییرات صفات مورفولوژیک، فیزیولوژیک و غلظت عناصر غذایی مؤثر است. در تمامی ژنوتیپ­های مطالعه شده با افزایش سطح شوری،شاخص­های مورد مطالعه شامل ارتفاع شاخه، قطر شاخه، تعداد برگ کل، درصد برگ­های سبز، وزن تر و خشک اندام هوایی، محتوی آب نسبی، شاخص کلروفیل، کلروفیل a، b و کل، کاهش و درصد برگ­های نکروزه کاهش یافت. درحالیکه درصدبرگ­های ریزش یافته، نسبت وزن تر ریشه به وزن تر اندام هوایی، درصد نشت یونی، درصد سدیم، درصد کلر، و نسبت سدیم به پتاسیم برگ­ها افزایش یافتند، ولی میزان کاهش و افزایش در صفات اندازه­گیری شده در بین ژنوتیپ­های مطالعه شده با یکدیگر اختلاف معنی­داری داشتند. در سطح شوری هفت دسی­زیمنس بر­متر، در ژنوتیپ­های ’چاه افضل‘ و ’رباب نیریز به ترتیب برگ­های نکروزه (3% و 6/5%)، برگ­های ریزش یافته (05/1% و 83/4%)، نشت یونی (95/3% و 60/8 %)، سدیم (31/0% و 67/0%)، کلر (13/0% و 43/0%)، پتاسیم (64/0% و 27/0%)، و نسبت سدیم به پتاسیم (12/0 و 64/0 واحد) نسبت به گیاهان شاهد (سطح شوری 1 دسی­زیمنس بر متر) افزایش یافتند. درحالیکه، برگ­های سبز (06/4% و 43/10%)، تعداد برگ کل (62/2% و 4/12%)، رطوبت نسبی (68/5% و 77/9%) و کلروفیل کل (13/5% و 56/14%) به ترتیب در ژنوتیپ­های ’چاه افضل‘ و ’ رباب نیریز ‘نسبت به گیاهان سطح شوری یک دسی­زیمنس بر متر )شاهد( کاهش یافتند.دراینتحقیق در مجموع، ژنوتیپ‌های ’چاه افضل‘ و ’ رباب نیریز ‘ به­ترتیب به­عنوان متحمل­ترین و حساس­ترین ژنوتیپ­ها به شوری انتخاب شدند. ژنوتیپ چاه افضل با حفظ خصوصیات رشدی خود و افزایش جذب پتاسیم در مقابل سدیم توانست به خوبی شوری تا هفت دسی­زیمنس بر متر را تحمل نماید.

کلیدواژه‌ها

عنوان مقاله [English]

Salinity Tolerance Evaluation in Two Selected Pomegranate (Punica granatum) Genotypes Compared with Rabab Neyriz Cultivar

نویسندگان [English]

  • Zahra Jamaati 1
  • Ali Momenpour 2
  • maryam dehestani 3
  • Mostafa Shirmardi 4

1 MSc student, Department of Horticultural Science, Faculty of Agriculture & Natural Resources, Ardakan University, Ardakan, Iran

2 Assistant Professor, National Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran

4 Assistant Professor, Department of Horticultural Science, Faculty of Agriculture & Natural Resources, Ardakan University, Ardakan, Iran

چکیده [English]

 
To evaluate the effect of salinity stress on some of the growth characteristics of selected pomegranate (Punica granatum) genotypes of regions with soil and water salinity, a factorial experiment was carried out based on completely randomized design (CRD). Treatments included two factors: genotypes including 3 cultivars (‘Post Siyah Ardakan’,‘Rabab Neyriz’ and ‘Chah Afzal’) and irrigation water salinity at 5 levels (1, 3, 5, 7 and 9 dS/m), with 4 replications. The study was conducted at the National Salinity Research Center of Iran in 2018-2019. The results showed that type of genotype and levels of salinity affected morphological and physiological characteristics and concentration of nutrient elements in leaves. In all of the studied genotypes, with increase in salinity concentration, all of studied characteristics including branch height, branch diameter, number of leaves, green leaves percentage, aerial organs fresh and dry weight, relative water content percentage, SPAD, and contents of a, b and total chlorophylls decreased. However, necrotic leaves percentage, dropped leaves percentage, root fresh weight to aerial organs fresh weight ratio, relative ions leakage percentage, Na+ and Cl- percentage and Na+ to K+ ratio increased at higher salinity levels. At salinity level of 7 dS/m, ‘Chah-Afzal’ and ‘Rabab Neyriz’ showed an increase in necrotic leaves (3% and 5.60%, respectively ), dropped leaves (1.05% and 4.83%), relative ions leakage (3.95 % and 8.60%), Na+ (0.31% and 0.67%), Cl- (0.13% and 0.43%), K+ (0.64% and 0.27%) and Na+ to K+ ratio (0.12 and 0.64), compared to 1 dS/m (control) treatment. Also, in ‘Chah-Afzal’ and ‘Rabab Neyriz’, there was a decrease in green leaves (4.06% and 10.43%, respectively), number of total leaves (2.62% and 12.14%), relative water content (5.68% and 9.77%), and total chlorophylls (5.13% and 14.56%), compared to the control. Overall, ‘Chah-Afzal’ and ‘Rabab Neyriz’ were recognized as, respectively, the most tolerant and sensitive genotypes to salinity stress. ‘Chah-Afzal’ genotype tolerated salinity of 7 dS/m by maintaining its growth characteristics and increasing potassium uptake against sodium.

کلیدواژه‌ها [English]

  • Na+ to K+ ratio
  • ‘Poost Siyah Ardakan’ genotype
  • Rootstock
  • Saline water
  1. حیدری شریف آباد، ح. 1380. گیاه و شوری. موسسه تحقیقات جنگل­ها و مراتع. 76 صفحه.
  2. مومن پور، ع.، د. بخشی، ع. ایمانی، و ح. رضایی.  a1393. اثر تنش شوری بر غلظت عناصر غذایی در رقم های بادام ’شکوفه‘، ’سهند‘ و ژنوتیپ’۴۰-۱۳‘ پیوند شده روی پایه GF677. مجله علوم باغبانی مشهد، 29 (2): 255-268.
  3. مومن پور، ع.، د. بخشی، ع. ایمانی، و ح. رضایی.  a1394. اثر تنش شوری بر خصوصیات رشدی و غلظت عناصر غذایی در رقم‌های بادام ’شاهرود 12‘، ’تونو‘ و ژنوتیپ’16-1‘ پیوند شده روی پایه  GF677. مجله به­زراعی کشاورزی ابوریحان 17 (1): 216-197.
  4. مومن پور، ع.، د. بخشی، ع. ایمانی، و ح. رضایی.  b1394. اثر تنش شوری بر خصوصیات مورفولوژیک و فیزیولوژیک در برخی از ژنوتیپ‌های انتخابی بادام پیوند شده روی پایه. مجله فنآوری تولیدات گیاهی. 7 (2): 152-137.
  5. مومن پور، ع.، ع. ایمانی، د. بخشی، و ح. رضایی. b1393. ارزیابی تحمل به شوری در برخی از ژنوتیپ­های بادام پیوند شده روی پایه GF677 بر اساس صفات مورفولوژیک و فلورسانس کلروفیل. فرآیند و کارکرد گیاهی. 3 (10): 9-28.
  6. ولی‌پور، م.، م. کریمیان اقبال، م. ج. ملکوتی، و ا. ح. خوشگفتارمنش. 1387. روند توسعه شوری و تخریب اراضی ‏کشاورزی در منطقه شمس‌آباد استان قم. علوم و فنون کشاورزی و منابع طبیعی، 12 (46): 691-683.‏
    1.  Arnon, D.I. 1949. Copper enzymes in isolated chloroplast polyphenoloxidase in Beta vulgaris. Plant Physiology. 24: 1- 15.
    2. Emami, A. 1996. Methods of plant analysis. Agricultural Research and Education Organization. Soil and Water Institute. 130 Pp.
    3. Fipps, G. 2003. Irrigation water quality standards and salinity management strategies. Texas Agricultural Extension Service. Pp 1-18.
    4. Guo, F.O., and Tang. Z.C. 1999. Reduced Na+ and K+ permeability of K+ channel in plasma membrane isolated from roots of salt tolerant mutant of wheat. Chinese Academy of Sciences. 41 (9): 217-220.
    5. Ibrahim, H.I.M. 2016. Tolerance of two pomegranates cultivars (Punica granatum L.) to salinity stress under hydroponic culture conditions. Journal of Basic and Applied Scientific Research. 6 (4): 38-46.
    6. Karakas. B., Bianco. R.L., and Rieger, M. 2000. Association of marginal leaf scorches with sodium accumulation in salt-stressed peach. Journal of the American Society for Horticultural Science. 35 (1): 83- 84.
    7. Karimi, H.R., and Hasanpour, Z. 2014. Effects of salinity and water stress on growth and macro nutrients concentration of pomegranate (Punica granatum L.). Journal of Plant Nutrition. 37:1937-1951.
    8. Liu, C., Ming, Y., Xianbin, H., and Zhaohe, Y. 2018. Effects of salt stress on growth and physiological characteristics of pomegranate (Punica granatum L.) cuttings. Pakistan Journal of Botany. 50 (2): 457-464.
    9. Lutts, S., Kinet, J.M., and Bouharmont, J. 1995. Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany. 46: 1843–1852.
    10. Maas, E.V, and G.J, Hoffman. 1977. Crop salt tolerance: Current assessment. Journal of Irrigation and Drainage Engineering. 103: 115- 134. 
    11. Mahajan, Sh., and Tuteja, N. 2005. Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics. 444: 139-158.
    12. Massai, R., Remorni, D., and Tattini, M. 2004. Gas exchange, water relations and osmotic adjustment in two scion/rootstock combinations of Prunus under various salinity concentrations. Journal of Plant and Soil Science. 259:153-162.
    13. Mastrogiannidou, E., Chatzissavvidis, C., Antonopoulou, C., Tsabardoukas, V., Giannakoula, A., and Therios, I. 2016. Response of pomegranate cv. wonderful plants tο salinity. Journal of Soil Science and Plant Nutrition. 16 (3): 621-636.
    14. Momenpour, A., and Imani, A. 2018. Evaluation of salinity tolerance in fourteen selected pistachio (Pistacia Vera L.) cultivars. Advances in Horticultural Science. 32 (2): 249-264.
    15. Momenpour, A., Imani, A., Bakhshi, D., and Akbarpour, E. 2018. Evaluation of salinity tolerance of some selected almond genotypes budded on GF677 rootstock. International Journal of Fruit Science. 18 (4): 410-435. 
    16. Munns, R. 2002. Comparative physiology of salt and water stress. Plant, Cell and Environment. 25: 239-250.
    17. Munns, R., and M. Tester. 2008 Mechanisms of salinity tolerance. Annual Review of Plant Biology. 59: 651–681.
    18. Naeini, M. R., Khoshgoftarmanesh, A.H., Lessani, H., and Fallahi, E. 2005. Effects of sodium chloride-induced salinity on mineral nutrients and soluble sugars in three commercial cultivars of pomegranate. Journal of Plant Nutrition. 27 (8): 1319-1326.
    19. Okhovatian-Ardakani, A.R., Mehrabanian, M., Dehghani, F., and Akbarzadeh, A. 2010. Salt tolerance evaluation and relative comparison in cuttings of different pomegranate cultivars. Plant, Soil and Environment. 56 (4): 176-185.
    20. Rahemi, M., Nagafian, Sh. and Tavallaie, V. 2008. Growth and chemical composition of hybrid GF677 influenced by salinity levels of irrigation water. Plant Sciences. 7 (3): 309-313.
    21. Rahmani, A., Daneshvar, H.A., and Sardabi, H. 2003. Effect of salinity on growth of two wild almond species and two genotypes of the cultivated almond species (P. dulcis). Iranian Journal of Forest and Poplar Research, 11 (1): 202-208.
    22. Ruiz-Sanchez, M., Domingo, R., and Castel, G. 2010. Review: Deficit irrigation in fruit trees and vines in Spain. Spanish Journal of Agricultural Research. 8 (2): 5-20.
    23. Shibli, R.A., Shatnawi, M.A., and Swaidat, I.Q. 2003. Growth, osmotic adjustment and nutrient acquisition of bitter almond under induced sodium chloride salinity in vitro. Communications in Soil Science and Plant Analysis. 34: 1969-1979.
    24. Szczerba, M.W., D. T. Britto, and H. J. Kronzucker. 2009. K+ transport in plants: Physiology and molecular biology. Plant Physiology. 166: 447-466.
    25. Szczerba, M.W., Britto, DT., Balkos, KD. And Kronzucker, H.J. 2008. NH4+ stimulated and -inhibited components of K+ transport in rice (Oryza sativa L.). Experimental Botany. 59: 3415–3423.
    26. Tavousi, M., Kaveh, F., Alizadeh, A., Babazadeh, H., and Tehranifar, A. 2016. Effect of salinity and deficit irrigation on quantity and quality of pomegranate (Punica granatum L.). Iranian Journal of Irrigation and Drainage .4 (10): 499-507.
    27. Yamasaki, S., and Dillenburg, L.C. 1999. Measurements of leaf relative water content in Araucaria angustifolia. Revista Brasilian Fisiologia Vegetal. 11: 69-75.