اثر آب زیر‌زمینی کم‌عمق و شور روی رشد و زیست‌توده برنج

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

2 استاد گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران.

3 گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی منابع طبیعی، دانشگاه تهران، کرج، ایران.

4 استادیار گروه مهندسی آب دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

مشکل شوری خاک در برخی از شالیزارهای نواحی حاشیه دریای خزر به دلیل همجواری با دریا و قرارگیری در مناطق کم‌ارتفاع با سطح ایستابی کم‌عمق و شور به چشم می‌خورد. همچنین، با توجه به اینکه برنج یکی از مهم‌ترین گیاهان راهبردی برای اقتصاد کشور و مردم این منطقه محسوب می‌شود، بررسی امکان تولید برنج در حضور سطح ایستابی کم‌عمق و شور امری ضروری است. این پژوهش در سال 1396 در مرکز تحقیقات آب و هواشناسی پردیس کشاورزی و منابع طبیعی کرج-دانشگاه تهران در یک مدل فیزیکی (لایسیمتر بزرگ) انجام گرفت. پژوهش حاضر در لایسیمتر فلزی عایق تحت دو تیمار اصلی با سطح ایستابی کم‌عمق و غیرشور (FSG) و در حضور سطح ایستابی کم‌عمق و شور (SSG) به انجام رسید. شوری آب آبیاری برابر dS/m 94/0برای هر دو تیمار بوده و شوری آب زیرزمینی کم‌عمق در عمق 40 سانتی‌متری از سطح خاک برای تیمار SSGبه‌صورت تغذیه مصنوعی از پایین در dS/m20 تنظیم گردید. نتایج پروفیل شوری خاک در تیمار SSGحاکی از اختلاط کم آب شور و شیرین در منطقه بینابینی (از زیر سخت لایه یعنی عمق 30 تا 40 سانتی‌متری از سطح خاک) و تاثیر ناچیز شوری بر منطقه ریشه بود. دلیل این امر وجود دائمی لایه آب در شالیزار و جریان رو به پایین آب می­باشد که می‌تواند از جریان رو به بالای آب شور و صعود مویینگی جلوگیری ‌کند. این مساله باعث شد تا عملکرد برنج تحت تاثیر قرار نگیرد و دچار افت نشود. نتایج حاصل از مقایسه میانگین پارامترهای عملکرد نیز همین امر را تصدیق می‌کند و نشان می‌دهد که شوری آب زیرزمینی کم‌عمق بر پارامترهای سطح برگ (LAI طول ریشه (RL ارتفاع بوته (PL)، پایداری غشا (MSI) و کلروفیل (SPADمحتوای آب نسبی (RWC) و زیست‌توده (BIO) در دو تیمار اثر قابل توجهی نداشته و باعث شده که اختلاف ناچیزی بین پارامترهای عملکرد حاصل شود. اختلاف پارامترهای عملکرد تیمار شاهد نسبت به شوری، از حدود 1% تا 12 % بوده است. ضمن اینکه عملکرد دانه و بیولوژیک در تیمار SSG نسبت به FSG به­ترتیب 2/3% و 5/4 % کاهش یافته است. بنابراین با توجه به آبشویی قابل‌توجه خاک بعد از کشت، کاهش ناچیز محصول و تحلیل حرکت آب و املاح در خاک، می‌توان تولید برنج را در این نوع اراضی مدنظر قرار داد. همچنین با استفاده مفید و کارآمد از اراضی دارای مشکلات شوری آب زیرزمینی کم‌عمق می‌توان از فشار روی منابع آب و خاک متعارف کاست.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Shallow and Saline groundwater on Rice Growth and Biomass

نویسندگان [English]

  • Masoud Pourgholam Amiji 1
  • Addolmajid Liaghat 2
  • Arezoo Nazi Ghameshlou 3
  • Mojtaba Khoshravesh 4
1 Department of Irrigation & Reclamation Engineering, Faculty of Agronomy Engineering & Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
2 Professor, Department of Irrigation & Reclamation Engineering College of Agriculture & Natural Resources, University of Tehran.
3 Department of Irrigation & Reclamation Engineering Faculty of Agronomy Engineering & Technology College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
چکیده [English]

 
The problem of soil salinity exists in the paddy field areas in Iran, especially in the Caspian Sea coastal areas, due to its proximity to the sea and low altitude with saline and shallow water table. Besides, considering that rice is one of the most important strategic crops for economy of Iran and the people in this area, this research was necessary in order to investigate the possibility of production of rice in the presence of shallow and saline groundwater table. This research was performed as a physical model (insulated metallic lysimeter) in the Meteorological Research Center of College of Agriculture and Natural Resources, University of Tehran, in 2017. The complete randomized design included two treatments with shallow water table: FSG and SSG, with fresh (control) and saline water, respectively. The salinity of irrigation water was 0.94 dS/m for both treatments. Moreover, for SSG treatment, the EC of shallow groundwater was 20 dS/m at 40 cm soil depth and was regulated as an artificial recharge. The results of salinity profile in SSG treatment showed that there was almost no mixing of fresh and saline water in interstitial zone (under the hard pan from 30 cm to 40 cm of soil surface). In this manner, there was insignificant effect of salinity in the root zone, because of existing of permanent water layer in rice field and downward water flow, which makes an obstacle for upward flow for saline water. This problem did not affect the rice yield, which didn’t decrease. The results of data analysis confirm this and show that shallow groundwater salinity has no significant effect on the parameters like leaf area index (LAI), root length (RL), plant length (PL), membrane stability index (MSI), chlorophyll (SPAD), relative water content (RWC) and the biomass (BIO). The difference between the performance of the control and the salinity treatments was about 1 to 12 percent, while the grain and biological yield in SSG treatment compared with FSG treatment decreased 3.2% and 4.5 percent, respectively. Therefore, considering the significant leaching of soil after cultivation, the negligible loss of yield and upward movement of saline water in the soil, production of rice and other plants in such areas seems possible. Also, with the help of efficient and effective use of lands with shallow saline groundwater, we can decrease the pressure on conventional soil and water resources.
 

کلیدواژه‌ها [English]

  • Coastal areas
  • Shallow water table
  • Lysimeter
  • Rice yield
  • Salinity profile
  1. اسدی، ر.، رضایی، م. و امیری، ا. 1388. تأثیر سطوح مختلف شوری بر عملکرد و اجزای عملکرد ارقام اصلاح‌شده برنج. پژوهشنامه اصلاحی گیاهان زراعی، 1(3)، ص 37-24.
  2. پلنگی، م.، پیرمرادیان، ن.، کریمی، و. و امیری لاریجانی، ب. 1393. تأثیر زهکشی سطحی میان فصل بر روند رشد، شاخص‌های فیزیولوژیک و عملکرد برنج رقم طارم هاشمی. نشریه تحقیقات غلات، دانشگاه گیلان، 4(4): 278- 267.
  3. پوراحمدی، م.، هنرنژاد، ر. و اویسی، م. 1393. تأثیر شدت برگ‌زدایی بر صفات کلروفیل، محتوای نسبی آب برگ و پایداری غشای سلولی و عملکرد دانه در سورگوم دانه‌ای (Sorgum Bicolor L.) تحت شرایط خشکی. پژوهش‌های زراعی در حاشیه کویر، 11(4): 243-237.
  4. ذاکری نیا، م.، فکوری دکاهی، ب. و ابراهیمی، س. س. 1395. تأثیر شوری‌های مختلف آب زیرزمینی در صعود نمک در پروفیل خاک و تبخیر از سطح آن. علوم و مهندسی آبیاری (مجله علمی- پژوهشی)، 39(1): 91-83.
  5. عباسی، ف. 1396. فیزیک خاک پیشرفته. انتشارات دانشگاه تهران، چاپ پنجم، تهران، ایران، 334 صفحه.
  6. عباسی، ف.، ناصری، ا.، سهراب، ف.، باغبانی، ج.، عباسی، ن. و اکبری، م. 1394. ارتقای بهره‌وری مصرف آب. جلد 1، انتشارات سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، 68 صفحه.
  7. علیزاده، ا. 1393. رابطه آب و خاک و گیاه. جلد 4، انتشارات دانشگاه صنعتی سجاد، مشهد، 400 صفحه.
  8. کریمی، ه. 1387. گیاهان زراعی. انتشارات دانشگاه تهران، چاپ ششم، تهران، ایران، 714 صفحه.
  9. محمدی، ن.، باقی‌زاده، ا. و رجایی، پ. 1394. تأثیر بتا آمینوبوتیریک اسید بر محتوای آب نسبی، تنظیم اسمزی و فعالیت آنزیم­های آنتی‌اکسیدان در گیاه کلزا (Brassica napus L.) تحت تنش خشکی. مجله پژوهش‌های گیاهی (مجله زیست‌شناسی ایران)، 28(4): 860-844.
  10. مهدوی، ف.، اسماعیلی، م. ع.، فلاح، ا. و پیردشتی، ه. 1384. مطالعه خصوصیات مرفولوژیک، شاخص‌های فیزیولوژیک، عملکرد و اجزای عملکرد دانه در ارقام بومی و اصلاح شده برنج (Oryza sativa L). مجله علوم زراعی ایران، 7(4): 297-280.
  11. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. 1998. FAO Irrigation and Drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 56(97): e156.
  12. Annual Report. 2016-17. Agricultural Water Management for Sustainable Rural Development, International Commission on Irrigation and Drainage (ICID).
  13. Carmelita, M., Wassmann, R., Hirano, T., Miyata, A., Hatano, R., Kumara, A., Padrea, A. & Amante, M. 2011. Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines. Agricultural Water Management, 98(9): 1417-1430.
  14. Chen, K. and Jiao, J. J. 2014. Modeling freshening time and hydro chemical evolution of groundwater in coastal aquifers of Shenzhen, China. Environmental Earth Sciences 71(5): 2409-2418.
  15. Chu, G., Chen, T., Wang, Z., Yang, J. & Zhang, J. 2014. Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crops Research, 162: 108–119.
  16. Clermont-Dauphin, C., Suwannang, N., Grünberger, O., Hammecker, C. & Maeght, J. L. 2010. Yield of rice under water and soil salinity risks in farmers’ fields in northeast Thailand. Field Crops Research, 118(3): 289-296.
  17. FAO. 2008. Extend and causes of salt-affected soil in participating countries. Available at http://www.fao.org/agll/spuch/topic4/htm.
  18. FAO. 2011. Food and Agriculture Organization. Statistics: FAOSSGAT agriculture from http://fao.org/crop/statistics.
  19. Iqbal, T. 2016. Rice straw amendment ameliorates harmful effect of salinity and increases nitrogen availability in a saline paddy soil. Journal of the Saudi Society of Agricultural Sciences.
  20. Lafitte, H.R., Ismail, A. and Bennett, J. 2004. Abiotic stress tolerance in rice for Asia: progress and the future. International Rice Research Institute.
  21. Lampayan, R.M., Rejesus, R.M., Singleton, G.R. & Bouman B.A.M. 2015. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Research, 170: 95–108.
  22. Ministry of Jehad-E-Agriculture., 2006. Agronomic and Horticultural Production. Jehad-E-Agriculture, Deputy of Planning and Economic. Buria of Statistics and Technology, No, 85/09.
  23. Ponnamperuma, F. N. 1972. The chemistry of submerged soils. Advances in Agronomy, 24: 59-96.
  24. Summer, M.E., 2000. Handbook of Soil Science. CRC Press, Boca Raton.
  25. Wichelns, D. & Qadir, M. 2015. Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater. Agricultural Water Management, 157: 31–38.
  26. Zarei, G., Homaee, M., Liaghat, A. M., & Hoorafar, A. H. 2010. A model for soil surface evaporation based on Campbell’s retention curve. Journal of Hydrology, 380(3-4): 356-361.