تعیین روابط بین عملکرد و ‌تبخیر-تعرق ذرت علوفه‌ای، در شرایط تنش شوری و محدودیت نیتروژن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری در رشته مهندسی آبیاری و زهکشی، دانشگاه بین المللی امام خمینی (ره)

2 استادیار گروه علوم و مهندسی آب، دانشگاه بین المللی امام خمینی (ره) ، قزوین

3 دانشیار گروه مهندسی آب، دانشگاه بین المللی امام خمینی (ره)

4 استادیار گروه مهندسی آب، دانشگاه بین المللی امام خمینی (ره)

5 گروه علوم و مهندسی آب دانشگاه بین المللی امام خمینی (ره) ، قزوین، ایران

چکیده

در این پژوهش، عملکرد و تبخیر- تعرق ذرت علوفه‌ای با رقم سینگل کراس 704، تحت تنش‌های شوری و محدودیت نیتروژن، مورد بررسی قرار گرفت. آزمایش، به‌صورت فاکتوریل و در قالب طرح بلوک‌های کامل تصادفی انجام شد. تیمارهای آب شور با هدایت‌الکتریکی؛ 5/0، 1/2، 5/3 و 7/5 دسی‌زیمنس برمتر، با انحلال نمک صنعتی در آب شیرین تهیه شد. تیمارهای محدودیت نیتروژن در چهار سطح؛ 100، 75، 50 و 25 درصد نیاز کود نیتروژن، بر اساس آزمون کودی بود. تیمارها، در سه تکرار و در کرت‌هایی به‌مساحت 9 مترمربع به‌اجرا درآمد. در تیمارهای مختلف تبخیر-تعرق ذرت، بین 220 تا 349 میلی‌متر و عملکرد ماده خشک، بین 4/9 تا 2/15 تن بر هکتار اندازه‌گیری شد. شیب تابع عملکرد نسبت به تبخیر-تعرق ذرت، با افزایش شوری در سطوح ، ،  و ، به‌ترتیب؛ 2/0، 207/0، 218/0 و 231/0 و با کاهش نیتروژن در سطوح ، ،  و  به‌ترتیب؛ 175/0، 182/0، 194/0 و 221/0 برآورد شد. نتایج نشان داد که با افزایش تنش‌ها، عملکرد ذرت بیشتر از تبخیر-تعرق، کاهش یافت. ضریب عملکرد  با رابطه دورنبوس-کسام محاسبه شد. مقادیر  با کاهش نیتروژن در سطوح ، ،  و  به‌ترتیب؛ 01/1، 048/1، 119/1 و 272/1 و با افزایش شوری در سطوح ، ،  و ، به‌ترتیب؛ 15/1، 19/1، 258/1 و 328/1 برآورد شد. به‌طور متوسط، عدد 27/1 به‌عنوان ضریب  محاسبه‌شد. در بیشترین تنش ، کارایی مصرف آب و نیتروژن به‌ترتیب؛ 38% و 5/34% نسبت به تیمار شاهد  کاهش یافت. ‌روابط به‌دست آمده در پژوهش نشان داد که نیاز آبی و عملکرد ذرت تحت تنش‌های مذکور، کم‌تر از پتانسیل منطقه می‌باشد. در این شرایط، جبران کمبود نیتروژن خاک و کاهش مصرف آب، موجب افزایش عملکرد محصول و استفاده بهینه از منابع آبی می‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of the Relationships between Yield and Evapotranspiration of Maize under Salinity Stress and Nitrogen Deficiency Conditions

نویسندگان [English]

  • reza saeidi 1
  • Hadi Ramezani Etedali 2
  • Abbas Sotoodehnia 3
  • abbas kaviani 4
  • Bijan Nazari 5
1 Ph.D candidate of irrigation and drainage Engineering, Imam Khomeini International University
2 Assistant professor, Dept. of Water Sciences and Engineering, Imam Khomeini International University
3 Associate professor, Dept of Water Engineering, Imam Khomeini International University
4 Assistant professor, Dept of Water Engineering, Imam Khomeini International University
5 Science and engineering water of engineering department IKIU, Qazvin, Iran
چکیده [English]

In this study, yield and evapotranspiration of maize (cv. SC 704) were investigated under salinity stress and nitrogen deficiency. The experiment was carried out in a randomized complete block design. Electrical conductivities of saline water treatments were 0.5( 15S0"> ), 2.1( 15S1)"> , 3.5( 15S2) "> , and 5.7( 15S3) "> dS. 15m-1"> . Nitrogen deficiency treatments were 100% ( 15F0"> ), 75% ( 15F1"> ), 50% ( 15F2"> ), and 25% ( 15F3"> ) of nitrogen fertilizer requirement based on soil testing. The treatments were carried out in three replications and in plots with area of 9 m2. In different treatments, evapotranspiration of maize was between 220 to 349 mm and dry matter yield between 9.4 to 15.2 ton.ha-1. With increase in the salinity levels in , , , and  treatments, the slopes of yield function were estimated as 0.2, 0.207, 0.218, and 0.231, respectively. Also, with reduction of nitrogen at salinity levels of , ,  and , the slopes were estimated as 0.175, 0.182, 0.194 and 0.221, respectively. The results showed that, with increasing stresses, yield of maize decreased more than evapotranspiration. The coefficient of  was calculated using the Doorenbos-Kassam relationship. With reduction of nitrogen at salinity levels of , ,  and , values of  coefficient were estimated as 1.01, 1.048, 1.119, and 1.272, respectively. Also, with increase in the salinity at nitrogen levels of , ,  and , Ky values were estimated as 1.15, 1.19, 1.258, and 1.328, respectively. On the average, Ky was calculated as 1.27. Under the highest stress 15 S3F3"> , water and nitrogen use efficiency decreased by: 38% and 34.5%, respectively, compared to the control treatment (S0F0). The results showed that the water requirement and yield of maize under the mentioned stresses were less than the region’s potential. Under these conditions, by supplying soil nitrogen and reducing water use, water resources will be used optimally and yield will increase.

کلیدواژه‌ها [English]

  • Coefficient of yield function
  • Doorenbos-Kassam relationship
  • Water and nitrogen use efficiency
  1. 1.              حسن‌لی، م. پارسی نژاد، م. و ح. ابراهیمیان. 1395. افزایش کارایی مصرف آب در شرایط استفاده از آب شور در آبیاری قطره‌ای. مجله علوم و مهندسی آبیاری. 39(3): 194-187.
  2. 2.              حیدرقلی‌نژاد کناری، م. قدیم زاده، م. و ا. فیاض مقدم. 1382. تأثیر تراکم گیاهی روی کیفیت علوفه ارقام هیبرید ذرت بر اساس خصوصیات زراعی. مجله علوم کشاورزی ایران. 34(2): 425-418.
  3. 3.              حیدری‌نیا، م. ناصری، ع. ع. برومندنسب، س. و م. الباجی. 1394. تأثیر آبیاری با آب شور بر تبخیر و تعرق و کارایی مصرف آب ذرت در مدیریت‌های مختلف زراعی. مجله علوم و مهندسی آبیاری.40(1/1): 110-99.
  4. 4.              سپهری، ع. مدرس ثانوی، ع. م. قره‌یاضی، ب. و ی. یمینی. 1381. تأثیر تنش آب و مقادیر مختلف نیتروژن بر مراحل رشد و نمو، عملکرد و اجزای عملکرد ذرت. مجله علوم زراعی ایران. 4: 201-184.
  5. 5.              علیزاده، ا. 1386. طراحی سیستم های آبیاری سطحی. انتشارات دانشگاه فردوسی مشهد. صفحه 215-214.
  6. 6.              فولادمند، ح. ر. نیازی، ج. ا. کشاورزی شیرازی، ه. و ل. جوکار. 1385. اثر متقابل مقادیر مختلف آبیاری و ازت بر عملکرد گندم. مجله علوم کشاورزی. 12(4): 786-779.
  7. 7.              کافی، م. گنجعلی، ع. و ف. عباسی .1386. بررسی تغییرات آبسزیک اسید (ABA) بافت برگ و مقاومت روزنه‌ای در ژنوتیپ‌های مقاوم و حساس به خشکی نخود. مجله علوم دانشگاه تهران. 33(4): 26-19.
  8. 8.              کوچکی، ع. ر. نصیری محلاتی، م. مرادی، ر. و ی. علی‌زاده. 1394. اثر سطوح مختلف نیتروزن بر عملکرد و کارایی مصرف نیتروژن در کشت مخلوط ذرت و پنبه. مجله پژوهش‌های زراعی ایران. 13(1): 13-1.
  9. 9.              محمدی، م. لیاقت، ع. م. و ح. مولوی. 1389. بهینه‌سازی مصرف آب و تعیین ضرایب حساسیت گوجه‌فرنگی در شرایط توأمان تنش شوری و خشکی در منطقه کرج. مجله آب و خاک. 24(3): 592-583.
  10. 10.           محمدی، م. محمدی قلعه‌نی، م. و ک. ابراهیمی. 1390. تغییرات زمانی و مکانی کیفیت آب زیرزمینی دشت قزوین. پژوهش آب ایران. 5(8): 52-41.
  11. 11.           نصرالهی، ع. 1393. بررسی اثر مدیریت های مختلف آبیاری قطره ای با آب شور بر عملکرد ذرت و توزیع نمک در منطقه ریشه. پایان نامه دکتری در رشته آبیاری و زهکشی، دانشگاه شهید چمران اهواز. صفحه 155.
    1. Akhtari, A., M. Homaee and Y. Hoseini. 2014. Modeling plant response to salinity and soil nitrogen deficiency. water and soil resources protection. 3(4): 33-50.
    2. Azizian, A. and A.R. Sepaskhah. 2014. Maize response to water, salinity and nitrogen levels: yield-water relation, water-use efficiency and water uptake reduction function. Plant Production. 8 (2): 183- 214.
    3. Bouazzama, B., D. Xanthoulis, A. Bouaziz, P. Ruelle and J. C. Mailhol. 2012.  Effect of water stress on growth, water consumption and yield of silage maize under flood irrigation in a semiarid climate of Tadla (Morocco). Agronomie, Société et Environnement. 16(4): 468-477. 
    4. Doorenbos, J. and A. H. Kassam. 1986. Yield response to water. FAO Irrigation and Drainage Paper No: 33, Rome.
    5. Greaves, G. E. and Y. M. Wang. 2017. Yield response, water productivity, and seasonal water production functions for maize under deficit irrigation water management in southern Taiwan. Plant Production Science. 20(4): 353-365.
    6. Igbadun, H.E., A.A. Ramalan and E. Oiganji. 2012. Effects of regulated deficit irrigation and mulch on yield, water use and crop water productivity of onion in Samaru, Nigeria. Agric. Water Manag. 109: 162–169.
    7. Katerji, N., J. W. Hoom, A. Hamdy and M. Mastrorilli. 2003. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agricultural Water Management. 62 (1): 37-66.
    8. Kuscu, H. and A. O. Demir. 2013. Yield and Water Use Efficiency of Maize under Deficit Irrigation Regimes in a Sub-humid Climate. Philipp agric scientist. 96 (1): 32-41.
    9. Lacerda, C. F., J. F. S. Ferreira, X. Liu and D. L. Suarez. 2016. Evapotranspiration as a Criterion to Estimate Nitrogen Requirement of Maize under Salt Stress. Agronomy and Crop Science. 202 (2016): 192-202.
    10. Mahmoudzadeh-Varzi, M. 2016. Crop Water Production Functions—A Review of Available Mathematical Method. Agricultural Science. 8(4): 76-83.
    11. Mahjoor, F., A. A. Ghaemi and M. H. Golabi. 2016. Interaction effects of water salinity and hydroponic growth medium on eggplant yield, water-use efficiency, and evapotranspiration. International Soil and Water Conservation Research. 4(2016): 99–107.
    12. Min, W., Z. Hou, L. Ma, W. Zhang, S. Ru and J. Ye. 2014. Effects of water salinity and N application rate on water- and N-use efficiency of cotton under drip irrigation. Arid Land. 6(4): 454–467.
    13. Ramos, T. B., J. Sim-unek, M. C. Gonc-alves, J. C. Martins, A. Prazeres. and L. S. Pereira. 2012. Two dimensional modeling of water and nitrogen fate from sweet sorghum irrigated with fresh and blended saline waters. Agric. Water Manage. 111: 87–104.
    14. Rudnick, D. R., S. Irmak, S. K. Djaman and V. Sharma. 2017. Impact of irrigation and nitrogen fertilizer rate on soil water trends and maize evapotranspiration during the vegetative and reproductive periods. Agricultural Water Management. 191: 77–84.
    15. Tariq, A. and J. F. Bierhuizen. 1971. Stomatal resistance, transpiration, and relative water content as influenced by soil moisture stress. Acta Bot. Neerl. 20(3): 318-326.
    16. Trout, T. J. and K. C. Dejonge. 2017. Water productivity of maize in the US high plains. Irrig Sci. 35:251–266.
    17. Unlukara, A., A. Kurunc, G. Duygu-Kesmez and E. Yurtseven. 2008. Growth and evapotranspiration of orka as influenced by salinity of irrigation water. Irrigation and Drainage Engineering. 2: 160-166.  
    18. Unlukara, A., A. Kurunc, G. Duygu-Kesmez, E. Yurtseven and D. Suarez. 2010. Effect of salinity on eggplant (solanum melongena) growth and evapotranspiration. Irrig. and Drain. 59: 203–214.
    19. Xin, H., Y. Peiling, R. Shumei, L. Yankai, J. Guangyu and L. Lianhao. 2016. Quantitative response of oil sunflower yield to evapotranspiration and soil salinity with saline water irrigation. Agric and Biol Eng. 9(2): 63-73.