ارزیابی شبکه عصبی مصنوعی در برآورد سرعت پیشروی جبهه رطوبتی در سامانه آبیاری قطره‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیئت علمی گروه علوم و مهندسی آب دانشگاه کرذستان

2 گروه مهندسی آب

چکیده

یکی از پارامترهای مهم در طراحی، مدیریت و اجرای سامانه­های آبیاری قطره­ای سطحی و زیرسطحی تخمین سرعت پیشروی جبهه رطوبتی در خاک است. از جمله پارامترهای تاثیرگذار در این پارامتر نوع خاک (بافت و ساختمان )، دبی قطره­چکان و رطوبت اولیه خاک است. در این رابطه آزمایش‌ها در یک مدل پلکسی‌گلاس شفاف با ابعاد m 5/0× m22/1 ×m 3 و بر روی سه نوع بافت (متوسط، سنگین و سبک) به انجام رسید. قطره­چکان‌ها در چهار عمق صفر (سطحی)، 15 (H1 30 (H2) و 45 (H3) سانتی­متر مورد ارزیابی قرار گرفت. در این پژوهش، تیمارهای دبی­ قطره­چکان‌ها با مقادیر 4/2 (Q14 (Q2) و 6 (Q3) لیتر در ساعت اعمال شد. با در نظر گرفتن متغیرهای دبی قطره­چکان، عمق نصب قطره­چکان، زمان، هدایت هیدرولیکی اشباع، چگالی ظاهری خاک، رطوبت اولیه خاک و همچنین نسبت درصد شن، سیلت و رس روابطی برای تخمین سرعت پیشروی جبهه رطوبتی با استفاده از شبکه عصبی مصنوعی ارائه شد. نتایج مقایسه بین مقادیر شبیه­سازی و اندازه­گیری ‌شده نشان دادند که مدل شبکه عصبی با دقت بالایی سرعت پیشروی جبهه رطوبتی در خاک را در جهات مختلف برآورد می­کند. مقادیر شاخص­های میانگین ریشه دوم خطا (RMSE) و میانگین خطای مطلق (MAE) به­ترتیب برای سرعت افقی از 09/0 تا 35/0 و 06/0 تا 27/0 سانتی­متر بر دقیقه، برای سرعت عمودی به پایین از 02/0 تا 17/0 و 02/0 تا 07/0 سانتی­متر بر دقیقه و برای سرعت عمودی به بالا از 08/0 تا 25/0و 05/0 تا 12/0 سانتی­متر بر دقیقه نوسان می­کند. استفاده از این مدل­ها در طراحی و اجرا می­تواند باعث بهبود عملکرد این سامانه در آبیاری قطره­ای سطحی و زیرسطحی شود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Artificial Neural Network for Estimating the Advance Velocity of the Wetting Front in Drip Irrigation

نویسندگان [English]

  • bakhtiar karimi 1
  • parva mohammadi 2
1 Assistant Professor, Water Engineering Science and Engineering, Faculty of Agriculture, University of Kurdistan.
2 Department of water science
چکیده [English]

One of the most important parameters in designing, managing, and operating surface and subsurface drip irrigation systems is the advance velocity of the wetting (moisture) front in soil, which enormously affects the performance of these systems. Emitter discharge, soil type (soil texture and structure) and initial moisture content are the main factors affecting advance velocity under drip irrigation.  Experiments were carried out in a transparent plexiglass tank (0.5 m*1.22 m*3 m) using three different soil textures (light, heavy, and medium). The drippers were installed at 4 different soil depths (surface, 15 cm, 30 cm, and 45 cm). The emitter outflows were considered 2.4, 4, and 6 L/hr. A simulation model was developed using artificial neural network (ANN) for predicting advance velocity of the wetting front (horizontal, downward, and upward direction) under point sources in surface and subsurface drip irrigation. The variables affecting wetting pattern included emitter discharge, emitter installation depth, application time, saturated hydraulic conductivity, soil bulk density, initial soil moisture content, and the proportions of sand, silt and clay in the soil. The results of the comparisons between the simulated and measured values showed that the ANN model was capable of predicting the advance velocity of the wetting front in different directions with high accuracy. The values of Root Mean Square Error (RMSE) varied from 0.09 to 0.35, from 0.02 to 0.17, and from 0.08 to 0.25 cm/min for horizontal, downward and upward velocity, respectively. Also, the values of Mean Absolute Error (MAE) varied from 0.06 to 0.27, from 0.02 to 0.07, and from 0.05 to 0.12 cm/min for horizontal, downward, and upward velocity, respectively. Using these models in designing and operating surface and subsurface drip irrigation systems could improve system performance.

کلیدواژه‌ها [English]

  • Irrigation management
  • simulation
  • Subsurface drip irrigation
  1. کریمی ب، سهرابی ت، میرزایی ف و آبابایی ب.a1394. استخراج روابط تخمین سرعت پیشروی جبهه حرکت آب در سیستم آبیاری قطره‌ای سطحی و زیرسطحی با کمک آنالیز ابعادی. مجله دانش آب و خاک جلد 25، شمارة 1، صفحه­های 102 تا 112.
  2. کریمی ب، میرزایی ف و سهرابی ت.b1394. بسط معادلاتی برای برآورد الگوی سطح خیس­شده در سیستم آبیاری قطره‌ای سطحی و زیرسطحی به روش تحلیل ابعادی. مجله دانش آب و خاک جلد 25، شمارة 3، صفحه­های 241 تا 252.
  3. کریمی ب، میرزایی ف و سهرابی ت. 1392. ارزیابی توزیع مجدد جبهه پیشروی آب در سیستم آبیاری قطره‌ای سطحی و زیرسطحی. مجله دانش آب و خاک جلد 23، شمارة 3، صفحه­های 183 تا 192.
  4. ملایی م، لیاقت ع­م و عباسی ف. 1387. تخمین الگوی خیس شدگی در آبیاری قطره­ای زیرسطحی با استفاده از آنالیز ابعادی. مجله دانش کشاورزی سابق، جلد 39، شمارة 2، صفحه­های 371 تا 378.
  5. میرزایی ف، لیاقت ع­م، سهرابی ت­م و امید م، 1384. نمونه­سازی جبهه رطوبتی خاک از منبع تغذیه خطی در آبیاری قطره­ای نواری. مجله تحقیقات مهندسی کشاورزی، جلد 6، شمارة 22، صفحه­های 53 تا 66.
  6. Al-Qinna MI and Abu-Awwad AM, 2001. Wetting patterns under trickle source in arid soils with surface crust. Journal of Agricultural Engineering Research 80(3): 301–305.
  7. Al-Ogaidi, A.A.M., Wayayok A., Rowshona, M.K. and Abdullah, A.F. 2016. Wetting patterns estimation under drip irrigation systems using anenhanced empirical model. Journal of Agricultural Water Mangement 176: 203-213.
  8. Al-Ogaidi, A.A.M., Wayayok A., Rowshona, M.K. and Abdullah, A.F. 2017. The influence of magnetized water on soil water dynamics under dripirrigation systems. Journal of Agricultural Water Mangement, 180: 70-77.
  9. Amin MSM. and Ekhmaj AIM, 2006. DIPAC-drip irrigation water distribution pattern calculator. In: 7th International micro irrigation congress, 10–16 Sept, PWTC, Kuala Lumpur, Malaysia.
  10. Angelakis AN, Kadir TN, Rolston DE. 1993. Time-dependent soil water distribution under a circular trickle source. Journal of Water Resource Management. 7:225–235.
  11. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000. Artificial neural networks in hydrology, I: preliminary concepts. Journal of Hydrologic Engineering, 5(2): 115-123.
  12. Bateni SM, Borghei SM, Jeng DS .2007. Neural network and neuro-fuzzy assessments for scour depth around bridge piers. Journal of Engineering Applications of Artificial Intelligence, 20(3):401–414.
  13. Cook F.J., Thorburn P.J., Fitch P., Charlesworth P.B. and Bristow K.L. 2006. Modelling trickle irrigation: comparison of analytical and numerical models for estimation of wetting front position with time.Journal of Environmental Model Software, 21:1353-1359.
  14. Ekhmaj, A.I., Abdulaziz, A.M., Almdny, A.M., 2007. Artificial neural networks approach to estimate wetting pattern under point source trickle irrigation. African Crop Science Conference, 1625–1630.
  15. Emamgholizadeh S., Moslemi K. and Karami G .2014. Prediction the groundwater level of bastam plain (Iran) by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). Journal of Water Resource Managment 28(15):5433–5446.
  16. Hammami M, Hedi D, Jelloul B, Mohamed M., 2002. Approach for predicting the wetting front depth beneath a surface point source: theory and numerical aspects. Journal of Irriggation and Drainage 51:347–360.
  17. Karimi, B., Sohrabi, T., Mirzaei, F. and Rodriguez-Sinobas, L. 2012a. Evaluation of wetting area and water distribution on different soils in subsurface drip irrigation emitters. European Geosciences Union Conference. General Assembly 2012.Vienna, Austria. 22-27 April.
  18. Karimi, B., Sohrabi, T. and Mirzaei, F. 2012b. Determining suitable probability distribution for estimating wetting front in surface and subsurface Drip Irrigation. Elixir Agriculture Journal, 48: 9242-9244.
  19. Lazarovitch N, Poulton M, Furman A, Warrick AW. 2009. Water distribution under trickle irrigation predicted using artificial neural networks. Journal of Engineering Mathematics. 64:207–218.
  20. Li, J., Zhang, J., Ren L. 2003. Water and nitrogen distribution as affected by fertigation of ammonium nitrate from a point source. . Journal of Irrigation Science. 22(1):19–30.
  21. Li J., Zhang J., and Rao M. 2004. Wetting Pattern and Nitrogen Distribution as Affected by Fertilization Strategies from a Surface Point Source. Journal of Agricultural Water Mangement. 67: 89-104.
  22. Lazarovitch N., Warrick A.W., Furman A. and Simunek J. 2007. Subsurface water distribution from drip irrigation described by moment analyses.Vadose Zone Journal, 6:116-123.
  23. Qiaosheng, Sh., Zuoxin, L., Zhenying, W. and Haigun, L. 2007. Simulation of the soil wetting shape under porous pipe sub-irrigation using dimensional analysis. Journal of Irrigation drainage Engineering. 56: 389-396.
  24. Samadianfard, S., Sadraddini, A.A., Nazemi, A.H., Provenzano, G., Kisi, O., 2012.Estimating soil wetting patterns for drip irrigation using genetic programming. Spanish Journal Agricultural Resource. 10, 1155–1166.
  25. Schwartzman M, Zur B, 1986. Emitter Spacing and Geometry of Wetted Soil Volume. Journal of Irrigation and Drainage Engineering 112(3): 242-253.
  26. Singh D. K., Rajput, T. B. S. Sikarwar, H. and Ahmad, V. T. 2006, Simulation of soil wetting pattern with subsurface drip irrigation from line source. Agricultural Water Management, 83:130-134.
  27. Taghavi SA, Marino MA, Rolston DE., 1984. Infiltration from trickle irrigation source. Journal of Irrigattion Drainage Engineeing. 110(4):331–341.