مدیریت کشت برنج در استان مازندران در شرایط تغییر اقلیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران.

2 استادیار گروه مهندسی آب، دانشگاه زابل، ایران.

چکیده

تغییر اقلیم با تغییر فنولوژی و فیزیولوژی برنج، بیلان آب خاک، تبخیر-تعرق و آب سبز، بر نیاز آب آبیاری این محصول تاثیر دارد. حفظ عملکرد فعلی برنج یا بهبود آن، مستلزم تطابق با این چالش مهم زیست محیطی در دوره­های آتی می­باشد. با توجه به نقش حیاتی استان مازندران در تامین برنج مورد نیاز کشور، در این تحقیق، اثر تغییر اقلیم و تقویم­های مختلف کشت بر نیاز آب آبیاری و میزان آب سبز فصل کشت برنج در این استان تا سال 2100، بررسی شد. با استفاده از داده­های هواشناسی دوره پایه (2010-1980) ایستگاه­های بابلسر، قایمشهر، نوشهر و رامسر و مدل ریزمقیاس­ساز LARS-WG، داده­های هواشناسی دوره 2011 تا 2100 تحت سناریوهای مختلف اقلیمی تولید شد. بر اساس مقادیر دمای حداقل و حداکثر، بازه­ی زمانی مشترک مناسب برای کشت در دوره­ی پایه و آتی تعیین شد. نیاز آبی برنج با استفاده از سیستم استنتاج عصبی-فازی تعیین شد. ارزیابی کارایی مدل با استفاده از آماره­های مختلف نشان­دهنده کارایی مناسب آن برای شبیه­سازی وضعیت اقلیمی آینده در منطقه مطالعه بود. در اثر تغییر اقلیم، کشت برنج می­تواند 2 تا 23 روز زودتر انجام شود و تعداد روزهای لازم برای رسیدگی فیزیولوژیکی نیز بین یک تا 20 روز کاهش خواهد یافت. با وجود کوتاه­تر شدن طول دوره­ی کشت، تاریخ­های کشت دیر هنگام به­دلیل اثرات منفی دمای زیاد و کاهش آب سبز، سبب افزایش نیاز آب آبیاری خواهد شد. با این وجود، کشت برنج در زمان مناسب، نیاز آبی آن در دوره­های آتی را تا 681 مترمکعب در هکتار کاهش خواهد داد. براساس نتایج، مدیریت تقویم کشت برنج راهکاری موثر برای دستیابی به کشاورزی پایدار در اقلیم آینده استان مازندران می­باشد. 

کلیدواژه‌ها


عنوان مقاله [English]

Rice Cultivation Management in Mazandaran Province under Climate Change

نویسندگان [English]

  • A D 1
  • F K 2
چکیده [English]

Climate change will affect rice water requirement through changes in rice physiology and phenology, soil water balance, evapotranspiration, and green water. Adapting with this major environmental challenge is necessary to maintain or improve the current level of rice production in the future. Considering the vital role of Mazandaran province in supplying rice demand of Iran, this study was conducted to quantify the effects of climate change and different cropping calendars on irrigation water requirement and amounts of green water of the province during rice growing season. Using climatic data of Babolsar, Ghaemshahr, Noshahr, and Ramsar for the base period (1980- 2010) and LARS-WG downscaling model, the weather data of 2011- 2100 were generated under different climate scenarios. Based on the minimum and maximum temperatures, the same cultivation period between current and future periods was selected. Rice water requirement was determined by Neuro-fuzzy inference system. Performance evaluation of LARS-WG model using different statistics indicated suitability of the model to simulate future climate conditions in the region. Under climate change, rice cultivation can start 2 to 23 days earlier and the number of days to physiological maturity will be reduced by one to 20 days. Despite shortening the growing period, due to the negative effects of high temperature and decrease in green water, late planting dates will increase irrigation water requirement. However, suitable cultivation time will reduce rice water requirement of the future up to 681 m3 ha-1. The results demonstrated that management of rice cultivation calendar can be an effective way to achieve sustainable agriculture under future climate condition in Mazandaran province. 

کلیدواژه‌ها [English]

  • ANFIS
  • Cultivation calendar
  • Green water
  • Sustainable agriculture
  • Water requirement
  1. سازمان جهاد کشاورزی مازندران، 1391. سیمای کشاورزی مازندران در نگاه آمار طی سال­های 1376 تا 1390. 39 صفحه.
  2. سلیمانی ننادگانی، م.، م. پارسی­نژاد، ش. عراقی­نژاد و ع. مساح­ بوانی، 1390. بررسی رخداد تغییراقلیم و تاثیر آن بر زمان کاشت، طول دوره رشد و نیاز آبی گندم زمستانه (مطالعه موردی: بهشهر). مجله پژوهش آب ایران، 6 (10): 20-11.
  3. عزیزی، ق. و م. روشنی، 1388. تحلیلی بر مفاهیم و اثرات تغییر اقلیم روی دما و تقویم زراعی برنج در گیلان، فصلنامه فضای جغرافیایی، دوره 4، شماره 8: 155-143.
  4. کلانکی، م. و ف. کاراندیش، 1394. پیش­بینی اثرات بلند مدت تغییر اقلیم بر مولفه­های اقلیمی در منطقه مرطوب. فصلنامه علمی پژوهشی مهندسی آبیاری و آب، (20): 148-131.
  5. مهدوی میمند، ا.، ج. احدیان، و م. احترام، 1393. تحلیل حساسیت عوامل مؤثر در هوادهی سرریز با استفاده از روشهای هوشمند مصنوعی و ANFIS. فصلنامه علمی پژوهشی مهندسی آبیاری و آب. 5(17): 95-83.

 

  1. Allen, R.G., L.S. Pereira, D. Raes and M. Smith, 1998. Crop evapotranspiration guideline for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Pp281.
  2. Darzi-Naftchali, A. and A. Shahnazari, 2014. Influence of subsurface drainage on the productivity of poorly drained paddy fields. European Journal of Agronomy, 56: 1-8.
  3. de Silva C.S., E.K. Weatherhead, J.W. Knox and J.A. Rodriguez-Diaz, 2007. Predicting the impacts of climate change: a case study on paddy irrigation water requirements in Sri Lanka. Agricultural Water Management, 93(1-2): 19-29.
  4. Elgaali. E., L.A. Garcia and D.S. Ojima, 2007. High resolution modeling of the regional impacts of climate change on irrigation water demand. Climatic Change, 84: 441–461.
  5. Enete A.A. and T.A. Amusa, 2010. Challenges of Agricultural Adaptation to Climate Change in Nigeria: a Synthesis from the Literature», Field Actions Science Reports [Online], URL: http://factsreports.revues.org/678.
  6. FAO, 2012, 2013 and 2014. FAO statistical year book, Food and Agriculture Organization of the United Nations, Rome.
  7. FAO, 2009. Low greenhouse Gas Agriculture mitigation and adaptation potential of sustainable farming system Roam.
  8. Hund A., Y. Fracheboud, A. Soldati and P. Stamp, 2008. Cold tolerance of maize seedlings as determined by root morphology and photosynthetic traits. European Journal of Agronomy, 28: 178–185.
  9. IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  10. Karandish, F., S. Salari and A. Darzi-Naftchali, 2015. Application of virtual water trade to evaluate cropping pattern in arid regions. Water Resource Management. 29: 4061–4074.
  11. Kelkar, U. and S. Bhadwal, 2007. South Asian regional study on climate change impacts and adaptation: implications for human development [Report]. Sri Lanka: Human Development Report Office.
  12. Kumar, M.D., 2001. Irrigation water management: principles and practice. PHI Learning Pvt. Ltd. Dey 12, 1379 AP - Technology & Engineering. Pp: 5000.
  13. Mainuddin, M. 2011. Agricultural productivity and food security in the lower Mekong Basin: impacts of climate change and options for adaptation. CSIRO Land and Water, Canberra
  14. Moratiel, R., R.L. Snyder, J.M. Durn and A.M. Tarquis, 2011. Trends in climatic variables and future reference evapotranspiration in Duero Valley (Spain). Natural Hazards and Earth System Sciences, 11: 1795– 1805.
  15. Nash, J.E. and J.V. Sutcliffe, 1970. River flow forecasting through conceptual models. A discussion of principles. Journal of Hydrology. 10: 282-290.
  16. Parry M.L., C. Rosenzweig, A. Iglesias, M. Livermore and G. Fischer, 2004. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environmental Change, 14:53–67.
  17. Peng, S.B., J.L. Huang, J.E. Sheehy, R.C. Laza, R.M. Visperas, X.H. Zhong, G.S. Centeno, G.S. Khush and K.G. Cassman. 2004. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences, U.S.A. 101, 9971–9975.
  18. Peterson, T.C., V.S. Golubev and P.Y. Groisman, 2002. Evaporation losing its strength. Nature 377, 687–688.
  19. Rao, B.B., P. Santhibhushan Chowdary, V.M. Sandeep, V.U.M. Rao and B. Venkateswarlu. 2014. Rising minimum temperature trends over India in recent decades: Implications for agricultural production. Global and Planetary Change 117: 1–8.
  20. Reddy, K.S., M. Kumar, V. Maruthi, B. Umesha, Vijayalaxmi and C.V.K. Nageswar Rao. 2014. Climate change analysis in southern Telangana region, Andhra Pradesh using LARS-WG model. Current Science, 107 (54): 54-62.
  21. Rodriguez Diaz, J.A., E.K. Weatherhead, J.W. Knox and E. Camacho, 2007. Climate change impacts on irrigation water requirements in the Guadalquivir river basin in Spain. Regional Environmental Change: 7:149–159.
  22. Sandhu, S.S., Prabhjyot-Kaur and KK. Gill, 2013. Weather Based Agro Indices and Grain Yield of Rice Cultivars Transplanted on Different Dates in Punjab. International Journal of Agriculture and Food Science Technology, 4: (10): 1019-1026.
  23. Shrestha, S., 2014. Climate Change Impacts and Adaptation in Water Resources and Water Use Sectors, Springer Water, Springer International Publishing Switzerland, DOI 10.1007/978-3-319-09746-6_5.
  24. Tabari, H., S. Marofi, A., Aeini, P. Hosseinzadeh- Talaee and K. Mohammadi, 2010. Trend analysis of reference evapotranspiration in the western half of Iran. Agricultural and Forest Meteorology, 151: 128–136.
  25. Tao, F., M. Yokozawa, Y. Xu, Y. Hayashi and Z. Zhang, 2006. Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agricultural and Forest Meteorology 138: 82–92.
  26. Valero, R.M.M., J.M.M. Avalos and E.V. Vazquez, 2012. Estimation of the daily water consumption by maize under Atlantic climatic conditions (A Coru˜ na, NW Spain) using Frequency Domain Reflectometry – a case study. Natural Hazards and Earth System Sciences, 12: 709–714.
  27. Wang, X., C.T. Mosley, J.R. Franken berger and E.J. Kladivko, 2006. Subsurface drain flow and crop yield predictions for different drain spacings using DRAINMOD. Agricultural Water Management, 79: 113–136.
  28. Wassmann R and A. Dobermann, 2007. Climate change adaptation through rice production in regions with high poverty levels. Journal of Semi-Arid Tropical Agricultural Research, 4(1):1–24.
  29. Xing, W., W. Wang, Q. Shao, S. Peng, Z. Yu, B. Yong and J. Taylor, 2014. Changes of reference evapotranspiration in the Haihe River Basin: Present observations and future projection from climatic variables through multi-model ensemble. Global and Planetary Change 115: 1-15.
  30. Yano, T., M. Aydin and T. Haraguchi, 2007. Impact of Climate Change on Irrigation Demand and Crop Growth in a Mediterranean Environment of Turkey. Sensors 7: 2297-2315.
  31. Yoshida, S., 1981. Fundamentals of rice crop science. IRRI, Los Banos, p 269.
  32. Zhang, H.L., X. Zhao, X..G. Yin, S.L. Liu, J.F. Xue, M. Wang, C. Pu and F. Chen, 2015. Challenges and adaptations of farming to climate change in the North China Plain. Climatic Change, 129 (1): 213-224.