اثر بیوچار کود گاوی و تنش رطوبتی بر ویژگی‌‮های رشد و کارایی مصرف آب اسفناج در شرایط گلخانه‌‮ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد بخش علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شیراز.

2 دانشیار بخش علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شیراز .

3 استاد بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شیراز .

چکیده

خشکسالی و تنش حاصل از آن یکی از مهم­‌ترین و رایج­ترین تنش­های محیطی است که تولیدات کشاورزی را با محدودیت روبرو می­سازد. با هدف بررسی اثر بیوچار حاصل از کود گاوی بر رشد، عملکرد و کارایی مصرف آب گیاه اسفناج در سطوح مختلف رطوبتی خاک، آزمایشی در شرایط گلخانه به‌صورت فاکتوریل ودرقالبطرحکاملاًتصادفی با سه تکرار در آبان تا دی ماه 1393 انجام شد. تیمارها شامل چهار سطح بیوچار (صفر، 25/1، 5/2 و 5 درصد وزنی خاک اولیه) و سه سطح رطوبتی (100 درصد ظرفیت مزرعه (بدون تنش)، 70 و 55 درصد ظرفیت مزرعه بود. سطوح تنش رطوبتی در طول فصل رشد با توزین روزانه گلدان­ها و جبران کمبود آب خاک در زمان آبیاری با افزودن مقدار آب لازم به آنها اعمال شد و میزان آب اضافه شده به هر گلدان نیز در طول فصل رشد اندازه­گیری شد. اعمال سطوح تنش رطوبتی سبب کاهش معنی­دار سطح برگ، هدایت روزنه­ای، آب مصرفی، وزن تر و وزن خشک اندام هوایی گیاه در مقایسه با شاهد (صفر درصد بیوچار و 100درصد رطوبت ظرفیت مزرعه) شد. اعمال تنش رطوبتی تا سطح 70 درصد ظرفیت مزرعه ضمن اینکه سبب کاهش معنی‏دار مصرف آب گیاه شد اثر معنی­داری بر کارایی مصرف آب گیاه نداشت. لیکن تیمار رطوبتی 55 درصد ظرفیت مزرعه کارایی مصرف آب گیاه را کاهش داد. درحالی که شاخص سبزینگی گیاه به­طور معنی­داری به­ترتیب به میزان 14، 14 و 11 درصد در مراحل اول، دوم و سوم (به­ترتیب در مراحل زمانی 40، 55 و 70 روز پس از کشت) تنها با اعمال سطح رطوبتی 55 درصد ظرفیت مزرعه افزایش یافت. به­طورکلی، کاربرد 25/1 درصد بیوچار (25 تن در هکتار) در سطوح مختلف تنش رطوبتی سبب کاهش اثرات منفی تنش رطوبتی (کاهش سطح برگ، کاهش وزن تر و خشک اندام هوایی و غیره)و بهبود شاخصهای رشد گیاه در مقایسه با شاهد شد. بنابراین کاربرد آن برای گیاه و به­ویژه در شرایطی که گیاه تحت تنش خشکی است و یا در گلخانه­ها و خزانه­ها به منظور کاهش میزان آب مصرفی و بهبود رشد و عملکرد گیاه قابل توصیه می­باشد، هرچند پیشنهاد می­شود آزمایش در شرایط مزرعه نیز انجام شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Cattle Manure Biochar and Drought Stress on the Growth Characteristics and Water Use Efficiency of Spinach under Greenhouse Conditions

نویسندگان [English]

  • e g 1
  • a m 2
  • a k 3
چکیده [English]

Drought and its resulting stress is one of the most important common environmental stresses that limit agricultural productions. In order to evaluate the effect of cattle manure biochar on the growth, yield, and water use efficiency of spinach at different soil moisture status, a factorial completely randomized design with 3 replications was conducted under greenhouse conditions during October 2014 to January 2015. Treatments consisted of four biochar levels (0, 1.25, 2.5 and 5% wt of initial soil) and three soil moisture levels (FC (without stress), 0.7FC, and 0.55FC). To compensate the water losses via evapotranspiration, the pots were weighted every day and water stress was imposed by adding the water required in each treatment. Total water consumption during the growing season was also determined. Results indicated that application of both soil water stress levels resulted in significant reduction in leaf area, stomatal conductance, water consumption, and fresh and dry weight as compared to those of the controls (without water stress and biochar application). The greenness index significantly increased by 14%, 14%, and 11 % as compared to that of the control when soil moisture level of 0.55 FC was applied at the first, second, and third growth stages (40, 55 and 70 days after planting), respectively. Application of biochar also significantly increased greenness index, leaf area, and stomatal conductance as compared to that of the control. Soil moisture stress up to 0.7FC decreased the plant water consumption; however, it did not affect the water use efficiency, significantly; while water stress level of 0.55 FC decreased water use efficiency significantly. In general, application of 1.25 biochar (25 ton/ha) as compared to the control decreased the negative effects of water stress on plant (reducing leaf area, fresh and dry weight, etc.) and improved plant growth indices and increased the growth of plant at all of the applied water stress levels. Therefore, in order to reduce water consumption and improve the growth and yield of plants, biochar application, especially under drought stress conditions or in greenhouse conditions, is recommended. Meanwhile, performing such an experiment under field conditions is also suggested.

کلیدواژه‌ها [English]

  • Water stress
  • calcareous soil
  • Greenness index
  • Stomatal conductance
  1. پورشیرازی، م. و م. رخشنده­رو. 1387. بررسی اثرات رژیم آبیاری، تراکم بوته و روش کشت بر عملکرد گیاه اسفناج (مطالعه موردی: استان بوشهر). مجله آب و خاک (علوم و صنایع کشاورزی) ، جلد 22، شماره 2، صفحات: 187-198.
  2. قادری، ن .ع.، س. سی و سه مرده، و ص. شاهویی. 1385. بررسی اثرات تنش بر برخی خصوصیات فیزیولوژیکی در دو رقم انگور. مجله علوم کشاورزی ایران، جلد 31، شماره 1، صفحات: 45-50.
  3. مجیدیان، م.، ا. قلاوند، ع. ا. کامگارحقیقی و ن. ع. کریمیان. 1386. اثر تنش خشکی، کود شیمیایی نیتروژن و کود آلی بر قرائت کلروفیل متر، عملکرد دانه و اجزای عملکرد ذرت دآنانی سینگل کراس 704. مجله علوم زراعی ایران، جلد 10، شماره 3، صفحات: 303 تا 330.
  4. مرادی، ع.، ع. احمدی و ع. حسین زاده. 1387. واکنش زراعی فیزیولوژی ماش (رقم پرتو) به تنش شدید و خفیف خشکی درمراحل رشد رویشی و زایشی. مجله علوم و فنون کشاورزی و منابع طبیعی، سال 12، شماره 45، صفحات: 659-671.
  5. نورقلی پور، ف.، ک. خاوازی و م. ج. ملکوتی. 1382. تاثیر کاربرد خاکی فسفات به همراه گوگرد، باکتری تیوباسیلوس و ماده آلی بر عملکرد کمی و کیفی سویا. مجموعه مقالات هشتمین کنگره علوم خاک ایران. رشت. صفحات: 28 تا 41.
  6. Akhtar, S. S., M. N. Andersen, and F. Liu. 2014. Biochar enhances yield and quality of tomato under reduced irrigation. Agric. Water Manage. 138: 37-44.
  7. Akhtar, S. S., M. N. Andersen, and F. Liu. 2015. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agric. Water Manage. 158: 61-68.
  8. Alburquerque, J. A., P. Salazar, V. Barrón, J. Torrent, M. D. C. del Campillo, A. Gallardo, and R. Villar. 2013. Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agron. Sust. Develop. 33: 475-484.
  9. Antolin, M. C., J. Yoller and  M. Sanchez-Diaz. 1995. Effects of temporary drought on nitrate-fed  and nitrogen fixing alfalfa plants. Plant Sci. 107: 159-165.
  10. Assiouty, F. and S. Abo-Sedera. 2005. Effect of bio and chemical fertilizers on seed production and quality of spinach (Spinacia oleracea L.). Inter. J. Agric. Biol. Engin. l6: 947-952.
  11. Boem, G. F. H. and G .W. Thomas. 1998. Phosphorus nutrition affects wheat response to water deficit. Agron. J. 90: 166-171.
  12. Bonpont, A. 1988. Water requirement of spinach and carrot. UNILEC Information, (Union Nationale Interprofessionnelle des Legumes de Conserve). August. 28 p.
  13. Bredemeier, C. 2005. Laser-induced chlorophyll fluorescence sensing as a tool for site-specific nitrogen fertilizer evaluation under controlled environmental and field conditions in wheat and maize. Ph. D. Thesis. Technical University of Munich, Germany. 219 p.
  14. Carter, S., S. Shackley, S. Sohi, T. B. Suy, and S. Haefele. 2013. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agron. J. 3: 404-418.
  15. Cely, P., G. Gasco, J. Paz-Ferreiro, and A. Mendez. 2015. Agronomic properties of biochars from different manure wastes. J. Anal. Appl. Pyrol. 111: 173–182.
  16. Chan, K., L. Van Zwieten, I. Meszaros, A. Downie, and S. Joseph. 2008. Agronomic values of greenwaste biochar as a soil amendment. Soil Res. 45: 629-634.
  17. Chartzoulakisa, K., A. Patakasb, A. Kofidisc, A. Bosabilidisc and A. Wastoub. 2002. Water stress affects on leaf anatomy, gas exchange. Water relations and growth of two avocando cultivars. Sci. Hort. 95: 39-50.
  18. Clavel, D., N. K. Drame, H. RoyMacauley, S. Bracounier and D. Laffray. 2005. Analysis of early responses to drought associated with field drought adaptation in four sahelian groundnut (Arachis hypogaea L.) culativavs. Environ. Exp. Bot. 54: 219-23.
  19. Dhanda, S. S. and G. S. Sethi. 1998. Inheritance of excised- leaf water loss and relative water content in bread wheat (Triticum aestivum). Euphytica, 104: 39-47.
  20. Dominguez, J., C. Edwards, and S. Subler. 1997. Comparison of vermicomposting and composting, biocycle. J. Compost. Organics Recycl. 38: 57-59.
  21. Dueck, T. A., A. Zuin, and J. Elderson. 1998. Influence of ammonia and ozone on growth and drought sensitivity of Pinus sylvestris. Atm. Environ. 32: 545-550.
  22. Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, and G. Myhre. 2007. Changes in atmospheric constituents and in radiative forcing. Chapter 2, Climate Change . The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (Eds.)]. Cambridge University Press, pp. 129-234.
  23. Glaser, B. and J. J. Birk. 2012. State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochimica et Cosmochimica Acta, 82: 39-51.
  24. Grant, C., S. Bittman, M. Montreal, C. Plenchette, and C. Morel. 2005. Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Can. J. Plant Sci. 85: 3-14.
  25. Gunes, A., A. Inal, M. B. Taskin, O. Sahin, E. C. Kaya, and A. Atakol. 2014. Effect of phosphorus-enriched biochar and poultry manure on growth and mineral composition of lettuce (Lactuca sativa L. cv.) grown in alkaline soil. Soil Use Manage. 30: 182–188.
  26. Inal, A., A. Gunes, O. Sahin, M. B. Taskin and E. C. Kaya. 2015. Impacts of biochar and processed poultry manure, applied to a calcareous soil, on the growth of bean and maize. Soil Use Manage. 31: 106–113
  27. Kammann, C. I., S. Linsel, J. W. Gößling, and H. W. Koyro. 2011. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations. Plant Soil. 345: 195-210.
  28. Kanesaki, Y., I. Suzuki, S. I. Allakhverdiev, K. Mikami, and  N. Murata. 2002. Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochem. Biophysic. Res. Comm. 290: 339-348.
  29. Lawlor, D. W. and G. Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plant. Plant Cell Environ. 25: 249-279.
  30. Lehmann, J. 2007. Bio-energy in the black. Front. Ecol. Environ. 5: 381–387.
  31. Lehmann, J. and S. Joseph. 2009. Biochar for environmental management. In: J. Lehmann and S. Joseph (Eds.). Biochar for Environmental Management: Science and Technology. 3rd Ed, London, Earthscan, 405 p.
  32. Leport, L., N. C. Turner, R. J. French, M. D. Barr, R. Duda, S. L. Davies, D. Tennant, and K. H. M. Siddique. 1999. Physiological responses of chickpea genotypes to terminal drought in a Mediterranean-type environment. Europ. J. Agron. 11: 279–291.
  33. Lindsay, W. L. and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42: 421-428.
  34. Lopez, F. B., T. L. Setter and C.R. Mc David. 1988. Photosynthesis and Water vapor Exchange of Pigeon pea leaves in response to water deficit and recovery. Crop Sci. 28: 141-145.
  35. Major, J., J. Lehmann, M. Rondon, and C. Goodale. 2010. Fate of soil‐applied black carbon: downward migration, leaching and soil respiration. Glob. Change Biol. 16: 1366-1379.
  36. Mary, B., S. Recous, D. Darwis, and D. Robin. 1996. Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant Soil. 181: 71-82.
  37. Olsen, S. R., C. V. Cole, F. S. Watanabe, and L. A. Dean. 1954. Estimation of available phosphorus in soil by extraction with sodium bicarbonate. United States Department of Agriculture. Circular, Washington DC, 939: 1-18.
  38. Rascio, A., M. Russo, C. Platani and N. Difonzo. 1998. Drought intensity effects on genotypic differences in tissue affinity for strongly bound water. Plant Sci. 132: 121-126.
  39. Rodrigues, J. G., P. M J. Edvardo, B. Forner, and F. Angeles. 2010. Citrus rootstock response to water stress. Sci. Hort. 126: 95-102.
  40. Singh, B., B. P. Singh, and A. L. Cowie. 2010. Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res. 48: 516-525.
  41. Smeal, D. and H. Zhang. 1994. Chlorophyll meter evaluation for nitrogen management in corn. Comm. Soil Sci. Plant Anal. 25: 1495-1503.
  42. Suppadit, T., N. Phumkokrak, and P. Poungsuk. 2012. The effect of using quail litter biochar on soybean (Glycine max L. Merr.) production. Chil. J. Agric. Res. 72: 244-251.
  43. Tate, R. L. 2000. Soil Microbiology. John Wily and Sons. New York, USA.
  44. Uzoma, K., M. Inoue, H. Andry, H. Fujimaki, A. Zahoor, and E. Nishihara. 2011. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manage. 27: 205-212.
  45. Vaccari, F., S. Baronti, E. Lugato, L. Genesio, S. Castaldi, F. Fornasier, and F. Miglietta. 2011. Biochar as a strategy to sequester carbon and increase yield in durum wheat. Europ. J. Agron. 34: 231-238.
  46. Van Zwieten, L., S. Kimber, S. Morris, K. Chan, A. Downie, J. Rust, S. Joseph, and A. Cowie. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil. 327: 235-246.
  47. Vieira, R., D. TeKrony, and D. Egli. 1992. Effect of drought and defoliation stress in the field on soybean seed germination and vigor. Crop Sci. Soc. Am. 32: 471-475.
  48. Wang, Y., F. Pan, G. Wang, G. Zhang, Y. Wang, X. Chen, and Z. Mao. 2014. Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd. seedlings under replant conditions. Sci. Hort. 175: 9-15.
  49. Yadav, R. S., Gayadin, and A. K. Jaiswal. 2001. Morpho-physiological changes and variable yield of wheat genotypes under moisture stress conditions. Ind. J. Plant Physiol. 6: 390-394.
  50. Zhang, A., L. Cui, G. Pan, L. Li, Q. Hussain, X. Zhang, J. Zheng, and D. Crowley. 2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric. Ecos. Environ. 139: 469-475.
  51. Zhang, A., Y. Liu, G. Pan, Q. Hussain, L. Li, J. Zheng, and X. Zhang. 2012. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil, 351: 263-275.