آینده‌نگاری بهره‌وری آب کشاورزی ایران در افق سال 1420 با استفاده از ماتریس اثرات متقابل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آبیاری و زهکشی، گروه مهندسی آبیاری و آبادانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

2 دانشیار، گروه مهندسی آبیاری و آبادانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران؛ عضو هیئت علمی دانشگاه بین‌المللی امام خمینی(ره)، قزوین، ایران.

3 استاد، گروه مهندسی آبیاری و آبادانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

چکیده

با توجه به چالش‌های فزاینده در بهره‌برداری از منابع آب، آینده‌نگاری بهره‌وری آب کشاورزی ضرورتی راهبردی در مسیر تاب‌آوری و امنیت غذایی کشور ایران محسوب می‌شود. این پژوهش با هدف طراحی سناریوهای آینده‌نگر در زمینه ارتقای بهره‌وری آب کشاورزی در افق سال 1420 در ایران، از روش تعادل اثرات متقابل (CIB) و نرم‌افزار ScenarioWizard 5.2 بهره گرفته است. ماتریس اولیه شامل ۱۳ متغیر محرک با سه حالت برای هر متغیر طراحی شد، که در نهایت تعداد نه سناریوی منسجم استخراج گردید. سناریوهای یک، چهار و هفت (بدبینانه) بیشترین تعداد فرضیات با استحکام بالا را داشتند، که نشان‌دهنده‌ی انسجام منطقی این سناریوها است. در مقابل، سناریوهای سه، شش و نه (خوش‌بینانه) با امتیاز کل تأثیرگذاری به‌ترتیب 405، 408 و 381، بیشترین ظرفیت مداخله‌پذیری را نشان دادند و از این‌رو در مسیر آینده‌نگاری مطلوب، گزینه‌های راهبردی‌تری تلقی می‌شوند. در ارزیابی سناریوهای مختلف، مشخص شد که گزینه‌های میانه (حالت دوم) بیشترین امتیاز تأثیر را کسب کرده‌اند. از جمله متغیرهای سیاستی مانند B2 با عنوان «نوسازی ۳۰% تا ۶۰% تجهیزات اراضی با حمایت دولت» با امتیاز 69/4%، نشان‌دهنده‌ی ترجیح سامانه به مسیرهای واقع‌گرایانه و پرهیز از انتخاب‌های افراطی یا حداقلی است. با این حال، برخی حالت‌های خوش‌بینانه (حالت سوم) نیز در حوزه‌های فناورانه حضور قابل‌ توجهی در سناریوها دارند. برای نمونه، متغیرهای D3 «توان‌افزایی ۵۰% تا ۸۰% تعاونی‌های کشاورزی و آب‌بران»،F3  «سهمیه‌بندی آب با کنترل دوره‌ای»، و G3  «پوشش ۶۰% تا ۹۰% چاه‌ها با کنتور هوشمند» حدود ۳۸% از امتیاز تأثیر را به خود اختصاص داده‌اند. لذا، در زمینه‌های مرتبط با فناوری، داده‌محوری و مشارکت کشاورزان، سامانه به اقدامات نوآورانه و تحول‌گرا تمایل دارد. با توجه به نتایج این مطالعه، پیشنهاد می‌شود سیاست‌گذاری آب کشاورزی بر ترکیب اقدامات واقع‌گرایانه و نوآورانه مانند توانمندسازی جوامع محلی با به­کارگیری فناوری‌های تحول‌گرا متمرکز شود.

کلیدواژه‌ها


عنوان مقاله [English]

Foresight of Agricultural Water Productivity in Iran by 2040 Using Cross-Impact Matrix Analysis

نویسندگان [English]

  • Tahmine Dehghani 1
  • Bijan Nazari 2
  • Abdolmajid Liaghat 3
1 PhD Candidate in Irrigation and Drainage, Department of Irrigation and Reclamation Engineering, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
2 Ass2- Associate Professor of the Department of Irrigation and Development Engineering, Faculty of Agriculture and Natural Resources, University of Tehran & Faculty member of Imam Khomeini International University, Qazvin, Iran,
3 Professor, Department of Irrigation and Reclamation Engineering, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
چکیده [English]

Given the growing challenges in water resource utilization, foresight in agricultural water productivity is considered a strategic necessity for enhancing resilience and food security in Iran. This study aimed to design forward-looking scenarios for improving agricultural water productivity by 2040, using the Cross-Impact Balance (CIB) method and ScenarioWizard 5.2 software. The initial matrix included 13 driving variables, each defined in three states, resulting in the extraction of nine coherent scenarios. Scenarios 1, 4, and 7 (pessimistic) contained the highest number of strongly consistent assumptions, indicating their logical coherence. In contrast, scenarios 3, 6, and 9 (optimistic), with total impact scores of 405, 408, and 381 respectively, demonstrated the greatest potential for strategic intervention and are thus considered more promising options for desirable foresight planning. Evaluation of the scenarios revealed that moderate options (second state) received the highest impact scores. For example, policy variable B2, titled “Modernization of 30–60% of farmland equipment with government support,” scored 69.4%, reflecting the system’s preference for realistic pathways and avoidance of extreme or minimal choices. Nevertheless, some optimistic states (third state) also showed significant presence in technological domains. For instance, variables D3 (“Empowerment of 50–80% of agricultural cooperatives and Water Users' Association (WUA)”), F3 (“Water rationing with periodic control”), and G3 (“Smart meter coverage for 60–90% of wells”) accounted for approximately 38% of the total impact score. Therefore, in areas related to technology, data-driven management, and farmer participation, the system tends to favor innovative and transformative actions. Based on the findings of this study, it is recommended that agricultural water policy focus on a combination of realistic and innovative measures, such as empowering local communities through the adoption of transformative technologies.

کلیدواژه‌ها [English]

  • Water Policymaking
  • Water rationing
  • Smart meter for wells
  • Water users equipment
  1. اخوان گیگلو، کرامت، خیری، میلاد، احمدپری، هدیه، عباسی، سلیم، و کلاته، فرهود، ۱۴۰۲. بررسی محتوای آب مجازی و شاخص‌های بهره‌وری فیزیکی و اقتصادی آب در محصولات زراعی (مطالعه موردی: شبکه آبیاری دشت مغان، استان اردبیل). فصلنامه مدیریت و مدل‌سازی منابع آب و خاک، ۳(۳)، ۲۷۷-۲۹۵.

doi: 10.22098/mmws.2023.11899.1186

  1. Albrecht, E., Belinskij, A., and Heikkilä, E. 2025. Policy coherence for ecosystem-based management: Implementing EU water and marine policies in the Archipelago Sea. Marine Policy171, 106427.‏ doi:1016/j.marpol.2024.106427
  2. Ali, A., Hussain, T., and Zahid, A. 2025. Smart irrigation technologies and prospects for enhancing water use efficiency for sustainable agriculture. AgriEngineering7(4), 106.‏ doi:3390/agriengineering7040106
  3. Ang, K., Sankaran, S., and Hase, S. 2023. Delphi Method: A democratic dialectical, consensus seeking open systems approach. Journal of Systems Thinking, 3(1), 1-15.

doi: 10.54120/jost.0000014

  1. Armas Vargas, F., Nava, L. F., Gómez Reyes, E., Olea-Olea, S., Rojas Serna, C., Sandoval Solís, S., and Meza-Rodríguez, D. 2023. Water and environmental resources: A multi-criteria assessment of management approaches. Water15(16), 2991.‏

doi: 10.3390/w15162991

  1. Asaadi, M. A., Mortazavi, S. A., Zamani, O., Najafi, G. H., Yusaf, T., and Hoseini, S. S. 2019. The impacts of water pricing and non-pricing policies on sustainable water resources management: A case of Ghorveh plain at Kurdistan province, Iran. Energies12(14), 2667.‏ doi: 10.3390/en12142667
  2. Atkinson, J. A., Wells, R., Page, A., Dominello, A., Haines, M., and Wilson, A. 2015. Applications of system dynamics modelling to support health policy. Public Health Research and Practice25(3).‏ doi: 10.17061/phrp2531531
  3. Babaeian, F., Delavar, M., Morid, S., and Jamshidi, S. 2023. Designing climate change dynamic adaptive policy pathways for agricultural water management using a socio-hydrological modeling approach. Journal of Hydrology627, 130398.‏

doi: 10.1016/j.jhydrol.2023.130398

  1. Barati, A. A., Azadi, H., Dehghani Pour, M., Lebailly, P., and Qafori, M. 2019. Determining key agricultural strategic factors using

AHP-MICMAC. Sustainability11(14), 3947.‏ doi: 10.3390/su11143947

  1. Benson, D., and Lorenzoni, I. 2017. Climate change adaptation, flood risks and policy coherence in integrated water resources management in England. Regional Environmental Change17(7), 1921-1932.‏ doi: 10.1007/s10113-016-0959-6
  2. Bishop, P., Hines, A., and Collins, T. 2007. The current state of scenario development: an overview of techniques. Foresight9(1), 5-25.‏ doi: 10.1108/14636680710727516
  3. Bouali, E. T., Abid, M. R., Boufounas, E. M., Hamed, T. A., and Benhaddou, D. 2021. Renewable energy integration into cloud and IoT-based smart agriculture. IEEE access10, 1175-1191.‏
  4. Brauner, S., and Vögele, S. 2025. Stakeholder‐driven consequence modeling employing cross‐impact balance scenario analysis. Futures and Foresight Science7(3), e70019.‏

doi: 10.1002/ffo2.70019

  1. Campfens, J. K., Duygan, M., and Binder, C. R. 2025. Initiating social tipping dynamics in energy transitions: A novel analytical approach for exploring feedback loops and intervention points. Environmental Innovation and Societal Transitions56, 100973.

 doi: 10.1016/j.eist.2025.100973

  1. D’agostino, D., Borg, M., Hallett, S. H., Sakrabani, R. S., Thompson, A., Papadimitriou, L., and Knox, J. W. 2020. Multi-stakeholder analysis to improve agricultural water management policy and practice in Malta. Agricultural water management229, 105920.‏ doi: 10.1016/j.agwat.2019.105920
  2. De Gooyert, V., Rouwette, E., Van Kranenburg, H., Freeman, E., and van Breen, H. 2016. Sustainability transition dynamics: Towards overcoming policy resistance. Technological Forecasting and Social Change111, 135-145.‏ doi: 10.1016/j.techfore.2016.06.019
  3. Dombrowsky, I., Lenschow, A., Meergans, F., Schütze, N., Lukat, E., Stein, U., and Yousefi, A. 2022. Effects of policy and functional (in) coherence on coordination–A comparative analysis of cross-sectoral water management problems. Environmental Science and Policy131, 118-127.‏ doi: 10.1016/j.envsci.2022.01.019
  4. Dosio, A., Mentaschi, L., Fischer, E. M., and Wyser, K. 2018. Extreme heat waves under 1.5 C and 2 C global warming. Environmental research letters13(5), 054006.‏

 doi: 10.1088/1748-9326/aab827

  1. Emadodin, I., Reinsch, T., and Taube, F. 2019. Drought and desertification in Iran. Hydrology6(3), 66.‏ doi: doi.org/10.3390/hydrology6030066
  2. Esfandiari Bahraseman, S., Firoozzare, A., Jamali Jaghdani, T., and Dourandish, A. 2024. Intervention strategies for the safe use of semi-treated wastewater by Iranian farmers: An approach for safe food production in the circular economy. NJAS: Impact in Agricultural and Life Sciences96(1), 2335376. doi: 10.1080/27685241.2024.2335376
  3. Et-Taibi, B., Abid, M. R., Boufounas, E. M., Morchid, A., Bourhnane, S., Hamed, T. A., and Benhaddou, D. 2024. Enhancing water management in smart agriculture: A cloud and IoT-Based smart irrigation system. Results in Engineering22, 102283.‏

doi: 10.1016/j.rineng.2024.102283

  1. García, L., Parra, L., Jimenez, J. M., Lloret, J., and Lorenz, P. 2020. IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors20(4), 1042.‏ doi: 10.3390/s20041042
  2. Gupta, A. D., Pandey, P., Feijóo, A., Yaseen, Z. M., and Bokde, N. D. 2020. Smart water technology for efficient water resource management: A review. Energies13(23), 6268.‏ doi: doi.org/10.3390/en13236268
  3. Hasson, F., Keeney, S., & McKenna, H. 2000. Research guidelines for the Delphi survey technique. Journal of advanced nursing, 32(4), 1008-1015.

doi.org/10.1046/j.1365-2648.2000.t01-1-01567.x

  1. Ingold, K., and Tosun, J. 2020. Special issue “Public policy analysis of integrated water resource management”. Water12(9), 2321.‏ org/10.3390/w12092321
  2. Jibat, E., Senbeta, F., Zeleke, T., and Hagos, F. 2024. Understanding water governance in the Central Rift Valley of Ethiopia: Governance framework, coherence and practices. Environmental Management74(3), 505-517.‏

doi: 10.1007/s00267-024-01966-6

  1. Karimi, V., Karami, E., and Keshavarz, M. 2018. Climate change and agriculture: Impacts and adaptive responses in Iran. Journal of Integrative Agriculture17(1), 1-15.‏

doi: 10.1016/S2095-3119(17)61794-5

  1. Kemp-Benedict, E., Carlsen, H., and Kartha, S. 2019. Large-scale scenarios as ‘boundary conditions’: a cross-impact balance simulated annealing (CIBSA) approach. Technological Forecasting and Social Change143, 55-63.‏ doi: 10.1016/j.techfore.2019.03.006
  2. Kimbowa, G., Wanyama, J., Mukaya, M., Otim, D., Awio, T., and Mugisha, M. 2025. Learning from farmers' knowledge on participatory irrigation management using Q‐Irrigation and Drainage74(1), 342-361.‏ doi: 10.1002/ird.2991
  3. Kosow, H. 2015. New outlooks in traceability and consistency of integrated scenarios. European Journal of Futures Research3(1), 16.‏

doi: 10.1007/s40309-015-0077-6

  1. Kosow, H., and Gaßner, R. 2008. Methods of future and scenario analysis: overview, assessment, and selection criteria(Vol. 39, p. 133). DEU.
  2. Kosow, H., Weimer-Jehle, W., León, C. D., and Minn, F. 2022. Designing synergetic and sustainable policy mixes-a methodology to address conflictive environmental issues. Environmental Science and Policy130, 36-46.‏ doi: 10.1016/j.envsci.2022.01.007
  3. Kosow, H., Brauner, S., Hölzlberger, F., Moschner, J., Vögele, S., Weimer-Jehle, W., and Rübbelke, D. 2023. Future water conflicts in Germany: serious gaming for policy design under future uncertainty. In 6th International Conference on Public Policy ICPP6.‏
  4. Kosow, H., Brauner, S., Brumme, A., Hauser, W., Hölzlberger, F., Moschner, J., and Weimer-Jehle, W. 2024. Uncharted water conflicts ahead: mapping the scenario space for Germany in the year 2050. Frontiers in Water6, 1492336.‏

doi: 10.3389/frwa.2024.1492336

  1. Krishnan, R. S., Julie, E. G., Robinson, Y. H., Raja, S., Kumar, R., Thong, P. H., and Son, L. H. 2020. Fuzzy logic based smart irrigation system using internet of things. Journal of Cleaner Production252, 119902. doi: 10.1016/j.jclepro.2019.119902
  2. Lesk, C., Anderson, W., Rigden, A., Coast, O., Jägermeyr, J., McDermid, S., and Konar, M. 2022. Compound heat and moisture extreme impacts on global crop yields under climate change. Nature Reviews Earth and Environment3(12), 872-889.‏

doi: 10.1038/s43017-022-00368-8

  1. Lhotka, O., Kyselý, J., and Farda, A. 2018. Climate change scenarios of heat waves in Central Europe and their uncertainties. Theoretical and applied climatology131(3), 1043-1054.‏ doi: 10.1007/s00704-016-2031-3
  2. Linstone, H. A., & Turoff, M. (Eds.). 1975. The delphi method (Vol. 1975, pp. 3-12). Reading, MA: Addison-Wesley.
  3. Lubell, M., and Fulton, A. 2008. Local policy networks and agricultural watershed management. Journal of Public Administration Research and Theory18(4), 673-696.

doi: 10.1093/jopart/mum031

  1. Makanda, K., Nzama, S., and Kanyerere, T. 2022. Assessing the role of water resources protection practice for sustainable water resources management: A review. Water14(19), 3153.‏ doi: 10.3390/w14193153
  2. Nawir, D., Bakri, M. D., and Syarif, I. A. 2023. Central government role in road infrastructure development and economic growth in the form of future study: the case of Indonesia. City, Territory and Architecture10(1), 12.‏ doi: 10.1186/s40410-022-00188-9
  3. Nouri, M., Homaee, M., Pereira, L. S., & Bybordi, M. 2023. Water management dilemma in the agricultural sector of Iran: A review focusing on water governance. Agricultural Water Management, 288, 108480. doi:10.1016/j.agwat.2023.108480
  4. Obaideen, K., Yousef, B. A., AlMallahi, M. N., Tan, Y. C., Mahmoud, M., Jaber, H., and Ramadan, M. 2022. An overview of smart irrigation systems using IoT. Energy Nexus7, 100124.‏ doi: 1016/j.nexus.2022.100124
  5. Okorogbona, A. O., Denner, F. D., Managa, L. R., Khosa, T. B., Maduwa, K., Adebola, P. O., and Macevele, S. 2018. Water quality impacts on agricultural productivity and environment. In Sustainable Agriculture Reviews 27(pp. 1-35). Cham: Springer International Publishing.‏ doi: 10.1007/978-3-319-75190-0_1
  6. Peters, B. G. 2018. The challenge of policy coordination. Policy Design and Practice1(1), 1-11.‏ doi: 10.1080/25741292.2018.1437946
  7. Qazi, S., Khawaja, B. A., and Farooq, Q. U. 2022. IoT-equipped and AI-enabled next generation smart agriculture: A critical review, current challenges and future trends. Ieee Access10, 21219-21235.‏ doi: 10.1109/ACCESS.2022.3152544
  8. Radmehr, R., Brorsen, B. W., and Shayanmehr, S. 2024. Adapting to climate change in arid agricultural systems: An optimization model for water-energy-food nexus sustainability. Agricultural Water Management303, 109052.‏

doi: 10.1016/j.agwat.2024.109052

  1. Radmehr, R., Ghorbani, M., and Ziaei, A. N. 2021. Quantifying and managing the water-energy-food nexus in dry regions food insecurity: New methods and evidence. Agricultural Water Management245, 106588.‏ doi: 10.1016/j.agwat.2020.106588
  2. Sadabadi, A. A., and Rahimirad, Z. 2025. Identifying scenarios for renewable energy development in Iran: the role of collaborative governance. Climate Policy, 1-16.‏

doi: 10.1080/14693062.2025.2477772

  1. Sankari, M., Sarayu, P. S., Kamatchi, K. S., and Saraswathi, P. A. 2024, December. Smart drip irrigation using IoT enabled water management in agriculture. In 2024 4th International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS)(pp. 1774-1780). IEEE. doi: 10.1109/ICUIS64676.2024.10866965
  2. Schweizer, V. J. 2020. Reflections on cross-impact balances, a systematic method constructing global socio-technical scenarios for climate change research. Climatic Change162(4), 1705-1722.‏ doi: 10.1007/s10584-019-02615-2
  3. Shokri, A., Rezaeian, A., and Keramati, M. A. 2024. Futurology of artificial intelligence governance in a smart government for achieving a sustainable and efficient structure for utilizing advanced technologies. Management Strategies and Engineering Sciences6(2), 90-103.‏ doi: 10.61838/msesj.6.2.11
  4. Srivastav, A. L., Dhyani, R., Ranjan, M., Madhav, S., and Sillanpää, M. 2021. Climate-resilient strategies for sustainable management of water resources and agriculture. Environmental Science and Pollution Research28(31), 41576-41595.‏

doi: 10.1007/s11356-021-14332-4

  1. Suda, A. O., Sušnik, J., Masia, S., and Jewitt, G. 2024. Policy coherence assessment of water, energy, and food resources policies in the Tana River Basin, Kenya. Environmental Science and Policy159, 103816.‏ doi: 10.1016/j.envsci.2024.103816
  2. Syrmos, E., Sidiropoulos, V., Bechtsis, D., Stergiopoulos, F., Aivazidou, E., Vrakas, D., and Vlahavas, I. (2023). An intelligent modular water monitoring iot system for real-time quantitative and qualitative measurements. Sustainability15(3), 2127.‏

doi: 10.3390/su15032127

  1. Touil, S., Richa, A., Fizir, M., Argente Garcia, J. E., and Skarmeta Gomez, A. F. 2022. A review on smart irrigation management strategies and their effect on water savings and crop yield. Irrigation and Drainage71(5), 1396-1416.‏ doi: 10.1002/ird.2735
  2. Trein, P., Meyer, I., and Maggetti, M. 2019. The integration and coordination of public policies: A systematic comparative review. Journal of Comparative Policy Analysis: Research and Practice21(4), 332-349.‏ doi: 10.1080/13876988.2018.1496667
  3. Trein, P., Biesbroek, R., Bolognesi, T., Cejudo, G. M., Duffy, R., Hustedt, T., and Meyer, I. 2021. Policy coordination and integration: A research agenda. Public Administration Review81(5), 973-977.‏ doi: 10.1111/puar.13180
  4. Weimer-Jehle, W. 2009. Properties of cross-impact balance analysis. arXiv preprint arXiv:0912.5352.‏ doi: 10.48550/arXiv.0912.5352
  5. Weimer-Jehle, W. 2013. ScenarioWizard 4.1-Constructing consistent scenarios using cross-impact balance analysis. Stuttgart Research Center for Interdisciplinary Risk and Innovation Studies. Germany: University of Stuttgart Stuttgart.‏
  6. Weimer-Jehle, W. 2023. Cross-Impact Balances (CIB) for Scenario Analysis. Cham, Switzerland: Springer.‏ doi: 10.1007/978-3-031-27230-1
  7. Zhao, Y. L., Sun, H. J., Ding, J., Pang, J. W., Lu, M. Y., Ren, N. Q., and Yang, S. S. 2025. A quantitative assessment framework for water-related policies in large river basins. Environmental Science and Ecotechnology24, 100537.‏

doi: 10.1016/j.ese.2025.100537