- آزاد اسلامیه، محمدرضا، کلانتری، سعیده، شیرمردی، مصطفی، و تازه، مهدی، 1395. بررسی کاربری اراضی و خصوصیات شیمیایی-فیزیکیخاک بر سرعت آستانۀ فرسایش بادی با استفاده از دادهکاوی، نشریه مهندسی اکوسیستم بیابان، (29)9، صص 12-1. https://doi.org/22052/deej.2020.9.29.1
- تقیزاده، روحالله، غزالی، آرزو، کلانتری، سعیده ، و رحیمیان، محمد حسن،1395. مکانیابی شوری خاک با استفاده از دادههای محیطی و نمونهبرداری هایپرکیوب در شهرستان میبد، نشریهخشک بوم، (6)1، صص79-69. https://doi.org/1001.1.2008790.1395.6.1.6.9
- فتحیزاد، حسن، تازه، مهدی، و کلانتری، سعیده،1394. مقایسه کارآیی روشهای طبقه بندی پیکسل پایه (روشهای شبکه عصبی آرتمپ فازی و تصمیمگیری درختی) و شیءگرا در تهیه نقشه کاربری اراضی (مطالعه موردی: حوزه خشک و نیمهخشک میمه، استان ایلام)، نشریه خشک بوم، (5)2،صص 81-69.
- Afendras, G. and Markatou, M., 2019. Optimality of training/test size and resampling effectiveness in cross-validation. Journal of Statistical Planning and Inference, 199, pp.286-301. https://doi.org/10.1016/j.jspi.2018.07.005
- Ahmed, A.N., Binti Othman, F., Abdulmohsin Afan, H., Khaleel Ibrahim, R., Ming Fai, C., Shabbir Hossain, M.D., Ehteram, M., Elshafie, A., 2019. Machine learning methods for better water quality prediction. J. Hydrol. 578, 124084.
https://doi.org/10.1016/j.jhydrol.2019.124084
- Cagliari, J., Veronez, M.R. and Alves, M.E., 2011. Remaining phosphorus estimated by pedotransfer function. Revista Brasileira de Ciência do Solo, 35, pp.203-212.
https://doi.org/10.1590/S0100-06832011000100019
- Carr, P.M., Brevik, E.C., Horsley, R.D. and Martin, G.B., 2015. Long‐Term No‐Tillage Sequesters Soil Organic Carbon in Cool Semiarid Regions. Soil Horizons, 56(6), pp.1-7. https://doi.org/10.2136/sh15-07-0016
- Castrillo, M., García, Á.L., 2020. Estimation of high frequency nutrient concentrations from water quality surrogates using machine learning methods. Water 2020.115490. Res. 172, 115490.
https://doi.org/10.1016/j
- Chen, K., Chen, H., Zhou, C., Huang, Y., Qi, X., Shen, R., Liu, F., Zuo, M., Zou, X., Wang, J., Zhang, Y., Chen, D., Chen, X., Deng, Y., Ren, H., 2020. Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data. Water Res. 171, 115454. https://doi.org/10.1016/j.watres.2019.115454.
- Di, Z., Chang, M., Guo, P., 2019. Water quality evaluation of the Yangtze River in China using machine learning techniques and data monitoring on different time scales. Water (Switzerland) 11. https://doi.org/10.3390/w11020339.
- Fathizad, H., Tazeh, M., Kalantari, S. and Shojaei, S., 2017. The investigation of spatiotemporal variations of land surface temperature based on land use changes using NDVI in southwest of Iran. Journal of African Earth Sciences, 134, pp.249-256. https://doi.org/10.1016/j.jafrearsci.2017.06.007
- Gupta, S.K., 1983. Variations of water table in Yamuna drainage basin of Haryana-implications and management strategies. In Seminar on Strategies for Irrigation Water Management, Patna.
- Liu, P., Wang, J., Sangaiah, A., Xie, Y., Yin, X., 2019. Analysis and prediction of water quality using LSTM deep neural networks in IoT environment. Sustainability 11, 2058. https://doi.org/10.3390/su11072058.
- Lu, H., Ma, X., 2020. Hybrid decision tree-based machine learning models for short term water quality prediction. Chemosphere 249, 126169.
https://doi.org/10.1016/j.chemosphere.2020.126169
- Ibrahim, H., Yaseen, Z.M., Scholz, M., Ali, M., Gad, M., Elsayed, S., Khadr, M., Hussein, H., Ibrahim, H.H., Eid, M.H. and Kovács, A., 2023. Evaluation and prediction of groundwater quality for irrigation using an integrated water quality indices, machine learning models and GIS approaches: A representative case study. Water, 15(4), p.694. https://doi.org/10.3390/w15040694
- Marakoğlu, T. and Çarman, K., 2010. Fuzzy knowledge-based model for prediction of soil loosening and draft efficiency in tillage. Journal of Terramechanics, 47(3), pp.173-178. https://doi.org/10.1016/j.jterra.2009.10.001
- McBratney, A.B., Odeh, I.O., Bishop, T.F., Dunbar, M.S. and Shatar, T.M., 2000. An overview of pedometric techniques for use in soil survey. Geoderma, 97(3-4), pp.293-327. https://doi.org/10.1016/S0016-7061(00)00043-4
- Merdun, H., Çınar, Ö., Meral, R. and Apan, M., 2006. Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil and Tillage Research, 90(1-2), pp.108-116. https://doi.org/10.1016/j.still.2005.08.011
- Minasny, B., McBratney, A.B., Brough, D.M. and Jacquier, D., 2011. Models relating soil pH measurements in water and calcium chloride that incorporate electrolyte concentration. European Journal of Soil Science, 62(5), pp.728-732.
https://doi.org/10.1111/j.1365-2389.2011.01386.x
- Papacharalampous, G., Tyralis, H. and Koutsoyiannis, D., 2019. Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes. Stochastic environmental research and risk assessment, 33(2), pp.481-514. https://doi.org/10.1007/s00477-018-1638-6
- Peltre, C., Thuriès, L., Barthès, B., Brunet, D., Morvan, T., Nicolardot, B., Parnaudeau, V. and Houot, S., 2011. Near infrared reflectance spectroscopy: A tool to characterize the composition of different types of exogenous organic matter and their behaviour in soil. Soil Biology and Biochemistry, 43(1), pp.197-205.
https://doi.org/10.1016/j.soilbio.2010.09.036
- Polley, E., LeDell, E., Kennedy, C., Lendle, S. and van der Laan, M.J., 2019. SuperLearner: super learner prediction R packages. [Online] Available: https://github. com/ecpolley/SuperLearner [2019 Jan. 2].
- Deka, P.C., 2014. Support vector machine applications in the field of hydrology: a review. Applied soft computing, 19, pp.372-386.
https://doi.org/10.1016/j.asoc.2014.02.002
- Sagi, O. and Rokach, L., 2018. Ensemble learning: A survey. Wiley interdisciplinary reviews: data mining and knowledge discovery, 8(4), p.e1249.
https://doi.org/10.1002/widm.1249
- Shaw, S.K. and Sharma, A., 2025. Evaluation and prediction of groundwater quality for irrigation using regression and machine learning models. Water Quality Research Journal, p.wqrj2025075. https://doi.org/10.2166/wqrj.2025.075
- Simm, J., De Abril, I.M. and Sugiyama, M., 2014. Tree-based ensemble multi-task learning method for classification and regression. IEICE TRANSACTIONS on Information and Systems, 97(6), pp.1677-1681. https://doi.org/10.1587/transinf.E97.D.1677
- Tyralis, H., Papacharalampous, G., Burnetas, A. and Langousis, A., 2019. Hydrological post-processing using stacked generalization of quantile regression algorithms: Large-scale application over CONUS. Journal of Hydrology, 577, p.123957.
https://doi.org/10.1016/j.jhydrol.2019.123957
- Tyralis, H., Papacharalampous, G. and Langousis, A., 2019. A brief review of random forests for water scientists and practitioners and their recent history in water resources. Water, 11(5), p.910. https://doi.org/10.3390/w11050910
- Wang, X., Zhang, F., Ding, J., 2017. Evaluation of water quality based on a machine learning algorithm and water quality index for the Ebinur Lake Watershed. China. Sci. Rep. 7, 1–18. https://doi.org/10.1038/s41598-017-12853-y.
- Wang, D., Liu, S., Zhang, C., Xu, M., Yang, J., Yasir, M. and Wan, J., 2023. An improved semantic segmentation model based on SVM for marine oil spill detection using SAR image. Marine Pollution Bulletin, 192, p.114981.
https://doi.org/10.1016/j.marpolbul.2023.114981
- Wilcox, L.V., Blair, G.Y. and Bower, C.A., 1954. Effect of bicarbonate on suitability of water for irrigation. Soil Science, 77(4), pp.259-266. https://doi.org/10.1097/00010694-195404000-00001
- Zhu, A.X., Qi, F., Moore, A. and Burt, J.E., 2010. Prediction of soil properties using fuzzy membership values. Geoderma, 158(3-4), pp.199-206.
https://doi.org/10.1016/j.geoderma.2010.05.001