Water Footprint and Irrigation Dietary Efficiency in Potato Production under Critical Water Resource Conditions: A Case Study in Ghorveh-Dehgolan Plain

Document Type : Research Paper

Authors

1 MSc. Graduate in Agricultural Economics, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.

2 PhD in Agricultural economics, Tarbiat Moddares University Tehran, Iran.

3 Associate Prof., Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.

Abstract

This research aimed to evaluate water footprint and irrigation dietary efficiency (IDE) of potato production in the Ghorveh-Dehgolan Plain of Kurdistan Province, during 2011and 2021. In this study, water footprint indices (blue, green, and grey), net production benefit per drop (NPBD), and irrigation dietary efficiency (IDE) were calculated using data from the Agricultural Jihad Organization, Meteorological Organization, FAO, and the USDA Food Composition Database. The results indicate that the average total water footprint for each ton of potatoes in the Ghorveh and Dehgolan regions was 431 and 446 cubic meters, respectively; i.e. producing each ton of the product requires significant consumption of water, which indicates high pressure on the region's limited water resources. Additionally, the economic productivity of water in Ghorveh (388 Tomans/m3) is higher than in Dehgolan (372 Tomans/m3). Analysis of dietary indices also showed that each liter of water in Ghorveh produces an average of 5.95 k.cal. and 0.016 g of protein, while these values in Dehgolan are 5.73 k.cal. and 0.014 g, respectively. Furthermore, examining the temporal trend of indices reveals a significant decrease in productivity during drought years, highlighting the vulnerability of the region's agricultural system to climate change. This research emphasizes the necessity of a paradigm shift from the approach of "supplying more water" toward "more efficient management of existing water" and, by providing evidence based on field data, establishes an appropriate scientific foundation for water resource and agricultural policy-making in critical regions of the country.

Keywords


  1. اسعدی، محمدعلی، وکیل­پور، محمدحسن، مرتضوی، سید ابوالقاسم و نعمتی فرج، طاهره. 1398. برآورد ارزش اقتصادی آب مصرفی از رهیافت‌های تمایل به پرداخت کشاورزان سیب‌زمینی‌کار و ارزش تولید نهایی. مجله تحقیقات آب‌وخاک ایران، 50(4): 1037-1023.

https://doi.org/10.22059/ijswr.2018.259209.667927

  1. بهرامی، مهدی، اسعدی، محمدعلی و خلیلیان، صادق. 1399. ارزیابی شاخص­های بهره­وری آب با تأکید بر آبیاری­های نوین و سنتی در محصولات زراعی شهرستان شهریار. مجله محیط­زیست و مهندسی آب، 6(3): 293-185. https://doi.org/10.22034/jewe.2020.225362.1354
  2. پیری، حلیمه و سارانی، رامین. 1395. بررسی بهره‌وری اقتصادی محصولات کشاورزی استان سیستان و بلوچستان با رویکرد ردپای آب. مجله تحقیقات آب‌وخاک ایران، (5)51، 1104-1093.

https://doi.org/10.22059/ijswr.2020.289567.668325

  1. سازمان جهاد کشاورزی استان کردستان. 1401. گزارش­های سالیانه. http://kurdistan.agri-jahad.ir
  2. شاهرخ نیا، محمدعلی و باغانی، جواد. 1400. بررسی میزان آب کاربردی و بهره‌وری آب مزارع سیب‌زمینی در شرایط زارعین استان فارس. مجله آبیاری و زهکشی ایران، 15(3 ): 635-624.
  3. شرکت سهامی آب منطقه­ای استان کردستان. 1400. گزارش­های امور آب استان. https://www.kdrw.ir
  4. صفدری، مهدی، حکمت­نیا، مهران و خواجه دادمیری، الهه. 1400. کارایی مصرف آب گندم از دیدگاه ردپای آب ( مطالعه موردی: استان سیستان و بلوچستان). نشریه آبیاری و زهکشی ایران، 15(6): 1480-1469.
  5. فتحی تیلکو، زینب، فتحی، پرویز و حسین پناهی، فرزاد. 1395. تأثیر عمق جایگذاری نوار آبیاری و میزان آب کاربردی بر عملکرد و بهره‌وری آب سیب‌زمینی در دشت دهگلان. مجله آب‌وخاک، 30(5): 1402-1394. https://doi.org/10.22067/jsw.v0i0.45453
  6. کریمی، محمد، حقایقی مقدم، سید ابوالقاسم و جلینی، محمد. 1402. بررسی حجم آب آبیاری و بهره‌وری آب کاربردی در مزارع جو استان خراسان رضوی (سبزوار و نیشابور). تحقیقات مهندسی سازه­های آبیاری و زهکشی، 24(91): 70-86. https://doi.org/10.22092/idser.2023.363803.1561
  7. Asaadi, M. A., Khalilian, S. and Mousavi, S. H. 2021. Evaluation of agricultural sustainability indicators and determination of cropping patterns with emphasis on deficit irrigation strategy: The case of the Qazvin irrigation network, Iran. Water Conservation Science and Engineering, 6(1):11-23.
  8. Boretti, A. and Rosa, L. 2019. Reassessing the projections of the world water development report. NPJ Clean Water, 2(1), 15.
  9. Deihimfard, R., Rahimi-Moghaddam, S., Collins, B. and Azizi, K. 2022. Future climate change could reduce irrigated and rainfed wheat water footprint in arid environments. Science of the Total Environment, 807, 150991.
  10. Drastig, K., Singh, R., Telesca, F. M., Carra, S. Z. and Jordan, J. 2023. A review of nutritional water productivity (NWP) in agriculture: why it is promoted and how it is assessed? Water, 15(24), 4278.
  11. 2023. The state of food security and nutrition in the world 2023. Food and Agriculture Organization of the United Nations, Rome, Italy
  12. Hoekstra, A. Y. and Chapagain, A. K. 2007. Water footprints of nations: water use by people as a function of their consumption pattern. Water resources management, 21(1): 35-48.
  13. Kahramanoğlu, İ., Usanmaz, S. and Alas, T. 2020. Water footprint and irrigation use efficiency of important crops in Northern Cyprus from an environmental, economic and dietary perspective. Saudi Journal of Biological Sciences, 27(1): 134-141.
  14. Kahramanoğlu, İ., Usanmaz, S. and Alas, T. 2020. Water footprint and irrigation use efficiency of important crops in Northern Cyprus from an environmental, economic and dietary perspective. Saudi Journal of Biological Sciences, 27(1): 134-141.
  15. Kunz, R., Reddy, K., Mthembu, T., Lake, S., Mabhaudhi, T., Chimonyo, V. and Naiken, V. 2024. Crop and Nutritional Water Productivity of Sweet Potato and Taro (No. 3124/1, p. 24). WRC Report.
  16. Liu, X., Shi, L., Engel, B. A., Sun, S., Zhao, X., Wu, P. and Wang, Y. 2020. New challenges of food security in Northwest China: Water footprint and virtual water perspective. Journal of Cleaner Production, 245, 118939.
  17. Mekonnen, M. M. and Hoekstra, A. Y. 2010. A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrology and Earth System Sciences, 14(7): 1259-1276.
  18. Mizyed, A., Mogheir, Y. and Hamada, M. 2025. Assessment of blue and green agricultural water footprint in the Gaza Strip, Palestine. Integrated Environmental Assessment and Management, 21(2): 326-334.
  19. Prasad, R., Hochmuth, G. J. and Boote, K. J. 2015. Estimation of nitrogen pools in irrigated potato production on sandy soil using the model SUBSTOR. PloS One, 10(1), e0117891.
  20. 2020. USDA FoodData Central. Printed at. (Accessed 12 March 2020). https://ndb.nal.usda.gov/ndb/nutrients/index
  21. Wu, M., Li, Y., Xiao, J., Guo, X. and Cao, X. 2022. Blue, green, and grey water footprints assessment for paddy irrigation-drainage system. Journal of Environmental Management, 302, 114116.
  22. Zhang, Y., Sun, M., Hong, J., Han, X., He, J., Shi, W. and Li, X. 2016. Environmental footprint of aluminum production in China. Journal of Cleaner Production, 133: 1242-1251.