ارزیابی دقت مدل‌های مبتنی بر داده‌های ماهواره‌ای حرارتی و نوری برای تخمین میزان رطوبت خاک سطحی با بافت‌های متفاوت در کشت و صنعت نیشکر هفت‌تپه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری علوم و مهندسی آب، دانشگاه شهیدچمران اهواز.

2 استاد گروه آبیاری و زهکشی، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز.

3 دانشیار گروه سنجش از دور و GIS ، دانشکده جغرافیا، دانشگاه تهران، ایران.

چکیده

رطوبت خاک یکی از پارامترهای کلیدی در مدیریت منابع آب، خاک و گیاهان به شمار می‌رود. به دلیل مشکلاتی نظیر ناپیوستگی در برداشت نمونه‌ها، عدم دسترسی به اطلاعات کافی در مورد ویژگی‌های مناطق، و نیز صرف هزینه و زمان زیاد برای برآورد میزان آب قابل­دسترس خاک و تغییرات مکانی آن، استفاده از تصاویر ماهواره‌ای به عنوان روشی به صرفه و کارآمد مطرح می‌شود. مدل ذوزنقه­ای حرارتی- مرئی بر اساس تفسیر توزیع پیکسل در فضای LST-V1 است که این فضا برای تخمین رطوبت سطحی خاک یا تبخیر-تعرق واقعی استفاده می­شود. هدف از این مطالعه برآورد رطوبت خاک با استفاده از تصاویر ماهواره­ای لندست 9 و 8 در طول فصل داشت گیاه در دوره 02-1401 و با استفاده از مدل­های ذوزنقه حرارتی و نوری در شرکت کشت و صنعت نیشکر هفت­تپه در سه بافت خاک متفاوت بود. نتایج حاکی از دقت مشابه هر دو مدل در برآورد رطوبت خاک در هر سه بافت خاک است. بر اساس رابطه رگرسیونی برازش شده بین هر دو مدل و درصد رطوبت حجمی خاک در نقاط اندازه ­گیری شده بیشترین ضریب تبیین بدست آمده بین داده ­های مشاهده ­ای و بدست آمده برای مدل ذوزنقه حرارتی 0/96 و برای مدل ذوزنقه نوری 0/97 در بافت خاک لومی است. که نشان­دهنده برازش و پراکنش دقیق داده ­ها در فضای LST-V1 و  STR-VI توسط مدل­های مورد نظر است. همچنین به­منظور کارایی نقشه ­های بدست آمده کمترین مقدار درصد RMSE برای دو مدل در بافت خاک لومی و به ترتیب 3/74 و 3/77 محاسبه گردید. در حالت کلی می­توان نتیجه گرفت که مدل­های ذوزنقه نوری و حرارتی رطوبت خاک را با اختلاف کم و با دقت بالا برای هر سه بافت خاک پیش­بینی می­کنند.

کلیدواژه‌ها


عنوان مقاله [English]

Valuating the Accuracy of Models Based on Thermal and Optical Satellite Data to Estimate Soil Moisture with Different Textures in Haft-Tapeh Sugarcane Agro- Industry

نویسندگان [English]

  • Mehdi Kaydani 1
  • Abdorahim Hooshmand 2
  • Saeid Hamzeh 3
1 PhD student of Water Science and Engineering, Shahid Chamran University of Ahvaz
2 Professor, Department of Irrigation and Drainage, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz
3 Associate Professor, Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Iran.
چکیده [English]

Soil moisture is one of the key parameters in the management of water, soil and plant resources. Due to problems such as discontinuity in taking samples, lack of access to sufficient information about the characteristics of the regions, as well as spending a lot of time and money to estimate the amount of available soil moisture and its spatial changes, the use of satellite images is proposed as a cost-effective and efficient method. The thermal-visible trapezoidal model is based on the interpretation of pixel distribution in LST-V1 space, which is used to estimate soil surface moisture or real evapotranspiration. The aim of this study was to estimate soil moisture during the season of 2021-22 for three different soil textures in Haft-Tapeh Sugarcane Agro-industry Company. This was done by Landsat 8 and 9 satellite images and using thermal and optical trapezoidal methods. The results indicated similar accuracy of both models in estimating soil moisture in all three soil textures. Based on the fitted regression relationship between both models and the percentage of volumetric soil moisture in the measured points, the highest coefficient of explanation obtained between was 0.96 for the thermal trapezoidal model and 97.00 for the optical trapezoidal model, in loamy soil texture. This indicated the exact fit and distribution of data in LST-V1 and STR-VI space by the desired models. Also, for the efficiency of the obtained maps, the lowest value of RMSE percentage was calculated for the two models in loamy soil texture as 3.74 and 3.77, respectively. In general, it can be concluded that optical and thermal trapezoidal models predict soil moisture with a small difference and with high accuracy for all the three loamy soil textures.

کلیدواژه‌ها [English]

  • Optical Trapezoidal Model
  • Thermal Trapezoidal Model
  • Landsat 8 and 9 satellite images
  1. خسرویان، مریم. انتظاری، علیرضا. رحمانی، ابوالفضل. و باعقیده، محمد.، 1396. پایش تغییرات سطح آب دریاچه­ی پریشان با استفاده از شاخص­های سنجش‌ازدور. هیدروژئوموفولوژی،13 ، صص: 99-120. 1001.1.23833254.1396.4.13.6.1
  2. خیرخواه زرکش، میرمسعود.، درویشی، مهدی.، آبکار، علی‌اکبر. و احمدی، غلام‌رضا.، 1392. برآورد شاخص­های پوشش گیاهی برنج با تصاویر چند زمانه راداری و اپتیک. پژوهش­های جغرافیای طبیعی، 44(5)، صص: 85-96. 22059/jphgr.2014.50074
  3. عبیات، محمد.، عبیات، مصطفی. و عبیات، مرتضی.، 1401. برآورد رطوبت سطحی خاک در اراضی کشاورزی با استفاده از تصاویر ماهواره­ای و شاخص­های سنجش‌ازدور (مطالعه موردی شهرستان شوشتر)، تحقیقات آب‌وخاک ایران. 53(5): صص:957-970. 22059/ijswr.2022.341981.669251
  4. فشانی، محمد.، ثنایی نژاد، سیدحسین. و داوری، کامران.، 1394. تخمین رطوبت خاک با استفاده از تصاویر سنجنده­ی مودیس (مطالعه موردی: محدوده­ی دشت مشهد). آب‌وخاک، 29(6)، صص: 1735-1748. https://doi.org/10.22067/jsw.v29i6.34978
  5. کاظمی­پور اسفهلان، مهسا.، محمدی، محمدحسین. و واعظی، علیرضا، 1397. تخمین نقطه­ای منحنی رطوبت خاک با استفاده از برخی ویژگی­های فیزیکی و مکانیکی خاک، تحقیقات کاربردی خاک، 6(2). صص: 84-95.
  6. ملایی، نرگس.، 1394. تأثیر مدیریت­های گوناگون کشت نیشکر بر برخی از شناسه­های کیفیت خاک در منطقه هفت­تپه خوزستان. رساله کارشناسی ارشد.
  7. محمدی معله زاده، جمال.، حمزه، سعید. و ناصری، عبدعلی، بررسی کارآیی سنجش‌ازدور طیفی در برآورد رطوبت سطحی خاک و مقایسه آن با داده­های حرارتی به‌منظور مدیریت آبیاری مزارع نیشکر. نشریه پژوهش آب در کشاورزی، 37(1)، صص: 85-102. 10.22092/jwra.2023.360324.953
  8. محمدی معله­زاده، جمال.، حمزه، سعید. و ناصری، عبدعلی، 1401. برآورد رطوبت سطحی خاک و بررسی برنامه­ریزی آبیاری اراضی نیشکر با استفاده از مدل ذوزنقه حرارتی. مجله تحقیقات آب‌وخاک ایران، 53(10). صص: 2209-2223. 22059/ijswr.2022.338383.669214
  9. Carlson, T.N., 2013. Triangle models and misconceptions, Int. J. Remote Sensing Applications, 3(3), pp: 155-158. 1001.1.20087942.1402.17.3.14.2
  10. Carlson, T.N., 2007. An overview of the" triangle method" for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors, 7, pp: 1612-1629. 22059/ijswr.2019.266967.668024
  11. Carlson, T.N., Gillies, R.R. and Perry. E.M., 1994. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens, 9(1–2), pp: 161–173. https://doi.org/10.1080/02757259409532220
  12. Curran, P.J., 1985. Principles of Remote Sensing. International Journal of Remote Sensing, 6(11), p: 1765.https://doi.org/10.1080/01431168508948322
  13. El Nahry, A.H., Ali, R.R. and El Baroudy, A.A., 2012. An approach for precision farming under pivot irrigationsystem using remote sensing and GIS techniques, Journal of Agricultural Water Management, 98 (4), pp:517-531.

10.1016/j.agwat.2010.09.012

  1. Gates, D.M., Keegan, H.J., Schleter, J.C. and Weidner, V.R., 1965. Spectral properties of plants. Applied optics, 4(1), pp: 11-20.

https://doi.org/10.1364/AO.4.000011

  1. Hosseini, F. and Farrokhian, A., 2019. Pedotransfer Function (PTF) for Estimation Soil Moisture Using NDVI, Land Surface Temperature (LST) and Normalized Moisture (NDMI) Indices. Journal of Water and Soil Conservation, 26(4), pp: 239–254. 22069/jwsc.2019.15306.3053
  2. Kornelsen, K.C. and Coulibaly, P., 2015. Reducing multiplicative bias of satellite soil moisture retrievals, Remote Sensing of Environment, 165(1), pp: 109-122. 1016/j.rse.2015.04.031
  3. Mason, M., 2010. Sample Size and Saturation in PhD Studies Using Qualitative Interviews. Forum Qualitative Sozialforschung/Forum: Qualitative Social Research, 11(3). https://doi.org/10.17169/fqs-11.3.1428
  4. McNally, A., Husak, G.J., Brown, M., Carroll, M., Funk, C., Yatheendradas, S., Arsenault, K., Peters-Lidard, C., and Verdin, J.P., 2015. Calculating Crop Water Requirement Satisfaction in the West Africa Sahel with Remotely Sensed Soil Moisture. Journal of Hydrometeorology, 16, pp.295-305.

 https://doi.org/10.1175/JHM-D-14-0049.1

  1. Moran, M.S., Clarke, T.R. and Inoue, Y., 1994. Vidal Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment, 49(3), pp.246-263. https://doi.org/10.1016/0034-4257(94)90020-5
  2. Nichols, D.S., 2011. Essentials of MMPI-2 assessment (2nd ed.), Essentials of psychological assessment. Hoboken, NJ: John Wiley & Sons Inc.
  3. Noureldin, N.A., Aboelghar, M.A., Saudy, H.S., and Ali, A.M., 2013. Rice yield forecasting models using satellite imagery in Egypt. The Egyptian Journal of Remote Sensing and Space Sciences, 16, pp.125-131.

 https://doi.org/10.1016/j.ejrs.2013.04.005

  1. Ochsner, T.E., Cosh, M.H., Cuenca, R.H., Dorigo, W.A., Draper, C.S., Hagimoto, Y., Kerr, Y.H., Njoku, E.G., Small, E.E and Zreda, M., 2013. State of the art in large-scale soil moisture monitoring. Soil Sci. Soc. Am. J, 77(6), pp.1888–1919.  https://doi.org/10.2136/sssaj2013.03.0093
  2. Pan, M., Sahoo, a.K., Wood, E.F., Al Bitar, A., Leroux, D. and Kerr, Y.H., 2012. An Initial Assessment of SMOS Derived Soil Moisture overthe Continental United States. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5, pp.1448-1457. 1109/JSTARS.2012.2194477
  3. Pasolli, L., Notarnicola, C., Bertoldi, G., Della Chiesa, S., Niedrist, G. and L Bruzzone, L., 2014. Soil moisture monitoring in mountain areas by using high-resolution SAR images: Results from a feasibility study, European journal soil science. 65(6), pp.852–64. https://doi.org/10.1111/ejss.12189
  4. Rongali, G., Keshari, A.K., Gosain, A.K., and Khosa, R., 2018. A mono-window algorithm for land surface temperature estimation from Landsat 8 thermal infrared sensor data: a case study of the Beas River Basin, India. Pertanika J Sci Technol, 26(2), pp.829-840.
  5. Rouse, J.W., Haas, R.H., Schell, J.A. and Deering, D.W., 1974. Monitoring Vegetation Systems in the Great Plains with ERTS. Third ERTS-1 Symposium NASA, NASA SP-351, Washington DC, pp.309-317.
  6. Sadeghi, M., Babaeian, E., Tuller, M. and Jones, S.B., 2017. The opticaltrapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote Sensing of Environment, 198, pp.52-68. https://doi.org/10.1016/j.rse.2017.05.041
  7. Sadeghi, M., Jones, S.B. and Philpot, W.D., 2015. A linear physicallybased model for remote sensing of soil moisture using short wave infrared bands. Remote Sens, Environ, 164, pp.66–76. 1016/j.rse.2015.04.007
  8. Shahmoradi, S., Malamiri, H.R.G. and Amini, M., 2021. Extraction of Soil Moisture Index (TVDI) Using a Scatter Diagram Temperature/Vegetation and MODIS Images. Journal of RS and GIS for Natural Resources, 12(1), pp.38–62. 30495/GIRS.2021.675968
  9. Verstraeten, W., Veroustraete, F., Van Der Sande, C.J., Grootaers, I. and Feyen, J., 2006. Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests. Remote Sensing of Environment, 101(3), pp.299–314. 1016/j.rse.2005.12.016
  10. Wang, L. and Qu, J.J., 2009. Satellite remote sensing applications for surface soil moisture monitoring, a review, Front. Earth Sci, China, 3(2), pp.237–247. 1007/s11707-009-0023-7
  11. Zhang, D. and Zhou, G., 2016. Estimation of soil moisture from optical and thermal remote sensing: a review. Sensors, 16(8), p.1308.

 https://doi.org/10.3390/s16081308