ارزیابی تخمین تنش آبی پنبه با استفاده از تصاویر چند طیفی ماهواره‌ای، مبتنی بر مدل درخت M5

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مهندسی آبیاری و زهکشی دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

2 دانشیار، گروه مهندسی آب دانشکده آب‌وخاک دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

3 استادیار، گروه مدیریت مناطق بیابانی دانشکده مرتع دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

چکیده

تنش آبی در نتیجه عدم تعادل بین آب خاک در محیط ریشه و آب مصرفی گیاه رخ می‌دهد که ضرورت تعیین شاخص تنش آبی گیاه را ایجاب می‌کند. رطوبت خاک سطحی ارتباط مستقیمی با آب موجود در گیاه دارد. در دسترس بودن داده‌های ماهواره‌ای منجر به تفکیک زمانی و مکانی داده‌های مزرعه‌ای شده است و فرصت‌های جدیدی را برای نظارت بر شرایط کشت ارائه می‌دهد. در این پژوهش، پایش دقیق و مستمر رطوبت خاک به‌عنوان نماینده تنش رطوبتی خاک، با اندازه‌گیری‌های میدانی رطوبت خاک و مقایسه با داده‌‌های چند طیفی تصاویر ماهواره‌ای لندست 9 و سنتینل 2 صورت گرفت. ارتباط بین شاخص‌های گیاهی به‌عنوان متغیر مستقل و رطوبت خاک سطحی به‌عنوان متغیر وابسته، با استفاده از روش‌های رگرسیون چند متغیره خطی و رگرسیون درخت M5بررسی شد. با توجه به غیرخطی بودن رابطه بین رطوبت خاک با بازتاب‌های طیفی، رگرسیون چند متغیره خطی نتایج رضایت‌بخشی را نشان نداد (با ضریب تعیین (R2) 0/46 و0/34 به ترتیب برای ماهواره لندست 9 و سنتتینل 2 و همچنین جذر میانگین خطا (RMSE) برابر 0/043 و 0/052). ولی، رگرسیون درختی M5، نتایج قابل قبول‌تری را نشان داد، به‌طوری‌که با برقراری 16 و 20 رابطه رگرسیونی برای ماهواره‌های لندست 9 و سنتینل 2 ، رطوبت خاک را با ضریب تعیین  0/70 و0/67 و جذر میانگین مربعات خطا برابر 0/033 و 0/038 برآورد کرد. نتایج نشان داد که تخمین رطوبت خاک با روش‌های مبتنی بر یادگیری ماشین، همچون مدل M5، دقت محاسبات را بالا ‌می‌برد. در رگرسیون درخت تصمیم M5، لزوماً تعداد بالای متغیر، منجر به افزایش دقت تخمین رطوبت خاک نمی‌شود و در تعداد متغیرهای کم هم رابطه‌ای با بالاترین دقت یافت می‌شود. بنا بر این، بدون اندازه‌گیری داده‌های خاک، می‌توان رابطه بدست آمده در سطح مزرعه را برای ارزیابی تنش آبی خاک و تعیین زمان آبیاری در زمین­های کشاورزی در مقیاس وسیع استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Cotton Water Stress Estimation Using Multispectral Satellite Images Based on M5 Tree Model

نویسندگان [English]

  • Maryam Mazidi 1
  • Mousa Hesam 2
  • Khalil Ghorbani 2
  • Chooghi Bayram Komaki 3
1 Ph.D. candidate, Irrigation and Drainage Engineering, Gorgan University of Agricultural Sciences and Natural Resources.
2 Associate Prof., Water Engineering Department, Faculty of Water and Soil, Gorgan University of Agricultural Sciences and Natural Resources.
3 Assistant Prof., Desert Area Management Department, Faculty of Pasture and Watershed Management, Gorgan University of Agricultural Sciences and Natural Resources.
چکیده [English]

Water stress occurs as a result of the imbalance between soil water in the root zone and plant water use, which necessitates determining the water stress index of the plant. Surface soil moisture is directly related to plant water content. Availability of satellite data has led to temporal and spatial resolution of field data and offers new opportunities for monitoring crop conditions. In this research, accurate and continuous monitoring of soil moisture content, as a representative of soil moisture stress, was done with field measurements of soil moisture, and comparison with multispectral data of Landsat 9 and Sentinel 2 satellite images. The relationship between plant indices, as an independent variable, and soil surface moisture, as a dependent variable, was studied using linear multivariate regression and M5 tree regression methods. Considering the non-linearity of the relationship between soil moisture and spectral reflectance, linear multivariate regression did not show satisfactory results with coefficient of determination (R2) of 0.46 and 0.34 for Landsat 9 and Sentinel 2 satellites, respectively, as well as the root mean square error (RMSE) equal to 0.043 and 0.052. However, M5 tree regression showed more acceptable results, such that by establishing 16 and 20 regression relationships for Landsat 9 and Sentinel 2 satellites, the soil moisture was estimated withR2 of 0.70 and 0.67 and RMSE of 0.033 and 0.038, respectively. The results showed that the estimation of soil moisture with methods based on machine learning, such as the M5 model, increases the accuracy of calculations. In the M5 decision tree regression, a high number of variables does not necessarily lead to an increase in the accuracy of soil moisture estimation, and a relationship with the highest accuracy was found in the low number of variables. Therefore, the relationship obtained at the field level can be used to evaluate soil water stress and determine irrigation time in agricultural lands on a large scale, without measuring soil data.

کلیدواژه‌ها [English]

  • Landsat 9
  • Sentinel 2
  • Data mining
  • Decision tree regression
  1. ربیعی، س.، و تجریشی، م.، 1399. بررسی و ارزیابی تأثیرات رطوبت سطحی خاک بر داده‌های تصاویر چند طیفی ماهواره سنتینل 2 و ارائه الگوریتمی برای برآورد مقدار رطوبت خاک، دوازدهمین کنگره ملّی مهندسی عمران. دانشگاه صنعتی سهند تبریز.
  2. رنجبر، ص.، و آخوندزاده هنزایی، م.، 1398. برآورد رطوبت سطح خاک با استفاده از روش‌های SVR و ANN در تصاویر ماهواره‌های سنتینل 1 و 2، نشریه علمی و پژوهشی مهندسی فناوری اطلاعات مکانی. سال شماره 4. 232-215.
  3. غفاری، الف.، داوری، ک.، و حسینی، ف.،. 1399. توسعه الگوریتم‌های بهبودیافته برای ریز مقیاس‌سازی رطوبت خاک سطحی ماهواره SMAP با استفاده از داده ماهواره‌های نوری/حرارتی، نشریه آبیاری و زهکشی ایران، شماره 2. جلد 14. 660-650.
  4. فشائی، م.، ثنائی­نژاد، ح.، و داوری، ک.، 1394. تخمین رطوبت خاک با استفاده از تصاویر ماهواره مودیس (مطالعه موردی: محدوده دشت مشهد). نشریه آب‌وخاک (علوم و صنایع کشاورزی،) جلد 29. شماره 6. 1748-1735. قربانی، خ.، تیموری، ر.، و سالارجزی، م.، 1400. برآورد عملکرد گندم با استفاده از تصاویر ماهواره‌ای در استان گلستان. نشریه هواشناسی کشاورزی (وابسته به انجمن مهندسی آبیاری و آب ایران). جلد 9. شماره 1. 52-38.
  5. Allen, R.G., Pereira, L.S., Raes, D., and Smith, M., 1998. Crop Evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper No. 56. FAO, Rome, 300pp.
  6. Alvino, A., and Marino, S., 2017. Remote sensing for irrigation of horticultural crops. Journal of Horticulturae.3:40-76.
  7. Baret, F., Houlès, V., Guérif, M., 2007. Quantification of plant stress using remotesensing observations and crop models: the case of nitrogen management. Experimental Botany Journal. 58: 869–880.
  8. Bhattacharya, B., Price, R.K., and Solomatine, D.P., 2007. Machine learning approach to modeling sediment transport. Hydraulic Engineering Journal. 133:440-450.
  9. Brillante, L., Mathieu, O., Lévêque, J., and Bois, B., 2016. Ecophysiological modeling of grapevine water stress in burgundy terroirs by a machine-learning approach. Frontiers in Plant Science Front Journal. 7: 796-899.
  10. Caturegli, L., Matteoli, S., Gaetani, M., Grossi, N., Magni, S., Minelli, A., Corsini, G., Remorini, D., and Volterrani, M., 2020. Effects of water stress on spectral reflectance of bermudagrass. Scientific Report Journal. 16:2-14.
  11. Dou, Z., Fang, Z., Han, X., Liu, Y., Duan, L., Zeeshan, M., and Arshad, M., 2022. Comparison of the Effects of Chemical Topping Agent Sprayed by a UAV and a Boom Sprayer on Cotton Growth. Agronomy Journal. 12:7-25.
  12. Enciso, J., Porter, D., and Peries, X., 2007. Irrigation monitoring with soil water sensors (Spanish). Fact sheet B-6194. College Station, Texas, USA, Texas AgriLife Extension Service, Texas A&M System.
  13. GAO B, 1996. NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment 58: 257-266.
  14. Gerhards, M., Schlerf, M., Mallick, K., and Udelhoven, T., 2019. Challenges and Future Perspectives of Multi- /Hyperspectral Thermal Infrared Remote Sensing for CropWater-Stress Detection: A Review. Remote Sensing Journal.11: 124-138.
  15. Ghorbani, K., Salarijazi, M., and Ghahreman, N., 2022. Developing Stepwise m5 Tree Model to Determine the Influential Factors on Rainfall Prediction and to Overcome the Greedy Problem of its Algorithm. Water Resources Management Journal. 36:3327-3348.
  16. Gonzalez-Dugo, V., L. Testi, F. J., Villalobos, A., Lopez-Bernal, F., Orgaz, P. J., Zarco-Tejada., and Fereres, E., Empirical Validation of the Relationship between the Crop Water Stress Index and Relative Transpiration in Almond Trees. Agricultural and Forest Meteorology Journal. 292:108-128.
  17. Huete, A.R., 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25: 295-309.
  18. Ihuoma, S. O., and Madramootoo, C. A., 2017. Recent advances in crop water stress detection. Computers and Electronics in Agriculture Journal. 141:267–275.
  19. Jackson, R.D., Idso, S.B., Reginato, R.J., and Pinter, P.J., 1981. Canopy temperature as acropwater stress indicator. Water Resources Reaserch Journal. 17:1133–1138.
  20. Lin, L., Chen, J., and CAI, C., 2012. High rate of nitrogen fertilization increases the cropwater stress index of corn under soil drought. Commun Soil Science Plant Journal. 43:2865–2877.
  21. Lisar, S.Y., Motafakkerazad, R., Hossain, M.M., and Rahman, I.M., 2012. Water stress in plants: Causes, effects and responses. In Water Stress; InTech: London, UK.
  22. López López. 2014. Water stress index as an indicator of irrigation timing in agricultural.
  23. Osakabe, Y., Osakabe, K., Shinozaki, K., and Tran, L.-S. 2014. Response of plants to water stress. Frontiers in Plant Science Front Journal, 5: 325-339.
  24. Penuelas, J., Filella, I., Biel, C., Serrano, L., and Save, R., 1993. The reflectance at the950–970 mm region as an indicator of plant water status. Remote Sens Journal. 14:1887–1905.
  25. Quinlan, J.R., 1992. Learning with continuous classes. In 5th Australian joint conference on artificial intelligence. 343-348.
  26. Rapaport, T., Hochberg, U., Shoshany, M., Karnieli, A., and Rachmilevitch, S., 2015. Combining leaf physiology, hyperspectral imaging and partial least squares-regression (PLS-R) for grapevine water status Photogrammetry and Remote Sensing Journal. 109: 88–97.
  27. Romero, M., Luo, Y., Su, B., and Fuentes, S., 2018. Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management. Computers and Electronics in Agriculture Journal. 147:109–117.
  28. Rouse, J.W., Haas, R.H., Schell, J.A., and Deering, D.W., 1974. Monitoring the Vernal Advancement and Retrogradation (Greenwave Effect) of Natural Vegetation; NASA/GSFC Type III Final Report. NASA: Greenbelt, MD, USA, GSFC: Greenbelt, MD, USA.
  29. Shyamal, S., Virnodkar, Vinod K., and Pachghare, V. C., 2020. Remote sensing and machine learning for crop water stress determination in various crops: a critical review. Precision Agriculture Journal, 21:1121–1155.
  30. Tanriverdi, C. A., Atilgan, H., and Akyuz, A., 2017. Comparasion of Crop Water Stress Index (CWSI) and Water Deficit Index (WDI) by Using Remote Sensing (RS). Infrastruktura I Ekologia Terenow 3:879–894.
  31. Veysi, S., Naseri, A. A., Hamzeh, S., and Bartholomeus, H., 2017. A satellite based crop water stress index for irrigation scheduling in sugarcane fields. Journal of Agricultural Water Management, 189, PP. 70–86.
  32. Wang, L., and Qu, J.J., 2007. NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophysical Research Letters. 34:20.
  33. Yi, Q.X., Bao, A., Wang, Q., and Zhao, J., 2013. Estimation of leaf water content in cottonby means of hyperspectral indices. Computing Electronic Agricultute Journal. 90: 144–151.
  34. Zarco-Tejada, P. J., Rueda, C. A., and Ustin, S. L., 2003. Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sensing of Environment Journal. 85:109–
  35. Zhou, C.J., Zhang, S.W., Wang, L.Q., and Miao, F., 2005. Effect of fertilization on thecanopy Temperature of winter wheat and its relationship with biologicalcharacteristics. Acta Ecologica Sinica. 25: 18–22.