نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 استادیار بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی،

چکیده

یکی از مطمئن‌ترین راه‌های جبران کمبود ایستگاه‌های هواشناسی، استفاده از پایگاه داده­های سنجش از دوری و بازتحلیل است که الگوی مناسبی در مناطق دارای کمبود داده ارائه می‌دهد. در این پژوهش، عملکرد دو پایگاه داده WaPOR و ERA5 جهت برآورد تبخیر و تعرق مرجع در حوضه آبریز دریای خزر در مقیاس‌های زمانی روزانه و ماهانه مورد ارزیابی قرار گرفت. داده‌های هواشناسی 64 ایستگاه سینوپتیک در دوره آماری (1390 تا 1400) بصورت روزانه از سازمان هواشناسی کل کشور اخذ گردید. در گام اول تبخیر و تعرق مرجع با استفاده از معادله فائو پنمن_مانتیث و نرم‌افزار REF-ET محاسبه گردید. مقادیر با نتایج حاصل از دو پایگاه داده WaPOR و ERA5 مورد مقایسه قرار گرفت. نتایج نشان داد که بطور میانگین، مقدار nRMSE پایگاه داده­های WaPOR و ERA5، در این حوضه آبریز نسبت به داده­های ایستگاه هواشناسی، محاسبه شده به ترتیب 29/6% و 29% در مقیاس روزانه می‌باشند. همچنین در مقیاس زمانی ماهانه، در بیش از 85% ایستگاه­ها، هر دو پایگاه داده مزبور نتایج قابل قبولی را ارائه می­نماید. در مقیاس ماهانه، مقدار nRMSE میانگین در سطح حوضه آبریز برای هر دو سنجنده WaPOR و ERA5، مقدار 19% به دست آمد. مقدار آماره rMBE نشان داد که پایگاه ERA5 در بیشتر ایستگاه­ها تبخیر و تعرق مرجع را کم برآورد می­نماید، ولی محاسبات پایگاه داده WaPOR همراه با بیش برآورد است. همچنین، از آنجا که ایستگاه­های با خطای بالای 30% در دو پایگاه داده متفاوت است، می­توان با ترکیب داده­های این دو، برآورد مناسب‌تری از تبخیر و تعرق مرجع در سطح حوضه آبریز خزر ارائه داد. نتایج نشان داد که در این حوضه، 34 ایستگاه در پایگاه داده WaPOR و 28 ایستگاه در پایگاه داده ERA5 حداقل خطا را داشتند و دو ایستگاه نیز مقدار خطای یکسانی داشتند. با توجه به نتایج، هر دو مجموعه داده WaPOR و ERA5 به‌عنوان مجموعه داده­های مناسب در نظر گرفته می­شود که می‌توانند برای کاربردهای مختلف هیدرولوژیکی، از جمله تخمین تبخیر و تعرق مرجع مورد استفاده قرار گیرند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Performance Evaluation of WaPOR and ERA5 Datasets for the Purpose of Estimating Reference Evapotranspiration in the Caspian Sea Basin

نویسندگان [English]

  • shadman veysi 1
  • Milad Nouri 1
  • Anahita Jabbari 2

1 Assistant prof., Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

2 Soil and Water Research Department, West Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Urmia, Iran

چکیده [English]

To compensate for the lack, or inadequacy, of weather stations data, one of the most reliable ways is to use the remote sensing and re-analysis dataset, which provides a suitable model for such areas. In this study, the performance of two data sources, namely, WaPOR and ERA5, was evaluated in estimating reference evapotranspiration at 64 synoptic stations in the Caspian coastal region in Iran, on a daily and monthly basis. To this end, meteorological data of 64 synoptic stations with a 10-year statistical period (2011-2021) was obtained daily from the Iran Meteorological Organization. The field data used included minimum and maximum temperature, relative humidity, wind speed, and solar radiation intensity. Then, evapotranspiration and reference evapotranspiration were calculated using the Penman-Monteith equation and REF-ET software. Finally, the results were compared with the results from the WaPOR and ERA5 data bases. The results showed that, on average, the nRMSE values of the WaPOR and ERA5 datasets compared to the calculated meteorological station data were 29.6% and 29%, respectively, on a daily basis. Also, on a monthly time scale, in more than 85% of the stations, both datasets provided acceptable results. On a monthly scale, the average nRMSE value for both WaPOR and ERA5 sensors in the catchment area was 19%. The rMBE value showed that the ERA5 dataset underestimated the reference evapotranspiration in most of the stations, while the WaPOR dataset overestimated. Given that the error rate of the two sensors is different in over 30 percent of the stations, a suitable estimate of reference evapotranspiration in the Caspian Sea basin area can be obtained by combining the data from these two datasets. The results showed that in the Caspian Sea coastal areas, 34 stations in the WaPOR dataset and 28 stations in the ERA5 dataset showed the minimum error, with two stations showing the same error. Thus, both WaPOR and ERA5 are suitable databases that can be used for hydrological purposes, including estimation of reference evapotranspiration.

کلیدواژه‌ها [English]

  • Data scarcity
  • Penman-Monteith Equation
  • Remote sensing
  • Meteorological stations
  1. حیدری مطلق، آ.، نصرالهی, ع،ح.، ویسی، ش.، و شریفی پور، م.، 1401. تاثیر به‌کارگیری الگوریتم‌های مختلف دمای سطح زمین در برآورد مقادیر تبخیر و تعرق واقعی. تحقیقات آب و خاک ایران، جلد 53، شماره 12، ص 2701-2720.
  2. گله­بان، ا.، حمزه، س.، ویسی، ش.، و علوی­پناه, س، ک.، 1401. برآورد تبخیروتعرق مرجع روزانه با استفاده از داده‌های سنجش از دور (مطالعة موردی: استان سیستان و بلوچستان). نشریه سنجش از دور و GIS ایران, جلد 14، شماره 2، ص 50-37.
  3. Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations, Rome, p. 300. Paper 56.
  4. Allen, R.G., Morton, C.G., Kamble, B., Kilic, A., Huntington, J.L., Thau, D., Gorelick, N., Erickson, T.A., Moore, R., Trezza, R., Ratcliffe, I., Robison, C.W., 2015. EEFlux: a Landsat-based evapotranspiration mapping tool on the google earth engine. In: Presented at the ASABE/IA Irrigation Symposium: Emerging Technologies for Sustainable Irrigation - A Tribute to the Career of Terry Howell. Long Beach, CA. https://doi.org/10.13031/irrig.20152143511.
  5. Barideh, R., Veysi, S., Ebrahimipak, N. and Davatgar, N., 2022. The challenge of reference evapotranspiration between the WaPOR data set and geostatistical methods. Irrigation and Drainage, 71(5), pp.1268-1279. https://doi.org/10.1002/ird.2738.
  6. Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B., Hirschi, M., & Betts, A. K. 2009. A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System. Journal of hydrometeorology, 10(3), 623-643.
  7. Blankenau, P. A., Kilic, A., & Allen, R. 2020. An evaluation of gridded weather data sets for the purpose of estimating reference evapotranspiration in the United States. Agricultural Water Management, 242, 106376.
  8. FAO, 2020. WaPOR V2 Quality Assessment - Technical Report on the Data Quality of the WaPOR database Version 2, 2020, FAO, Rome. http://www.fao.org/3/cb2208en/cb2208en.pdf
  9. Ebita, A., Kobayashi, S., Ota, Y., Moriya, M., Kumabe, R., Onogi, K., Harada, Y., Yasui, S., Miyaoka, K., Takahashi, K., Kamahori, H., Kobayashi, C., Endo, H., Soma, M., Oikawa, Y., Ishimizu, T., 2011. The Japanese 55-year reanalysis “JRA-55”: an Interim Report. Sci. Online Lett. Atmos. 7, 149–152. https://doi.org/10.2151/ sola.2011-038.
  10. Gibson, J.K., Kållberg, P., Uppala, S., Hernandez, A., Nomura, A., Serrano, E., 1999. ERA-15 Description. ECMWF Re-Analysis Project Report Series, 1.
  11. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Hor´anyi, A., Mu˜noz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., de Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., H´olm, E., Janiskov´a, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Th´epaut, J.N., 2020. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049. https://doi.org/10.1002/ qj.3803.
  12. Jensen, M.E., 1968. Water Consumption by Agricultural Plants. In: Kozlowski, T.T. (Ed.), Plant Water Consumption and Response. Water Deficits and Plant Growth, II. Academic Press, New York, pp. 1–22 (Chapter 1).
  13. Kalluri, S., Gilruth, P., Bergman, R., 2003. The potential of remote sensing data for decision makers at the state, local and tribal level: experiences from NASA’s Synergy program. Environ. Sci. Policy 6, 487–500.
  14. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437–471.
  15. Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J.J., Fiorino, M., Potter, G. L., 2002. NCEP–DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc. 83, 1631–1644. https://doi.org/10.1175/BAMS-83-11-1631.
  16. Lorenz, C., &Kunstmann, H. 2012. The hydrological cycle in three state-of-the-art reanalysis: Inter comparison and performance analysis. Journal of Hydrometeorology, 13(5), 1397-1420.
  17. Martins, D.S., Paredes, P., Raziei, T., Pires, C., Cadima, J., Pereira, L.S., 2017. Assessing reference evapotranspiration estimation from reanalysis weather products. An application to the Iberian Peninsula. Int. J. Climatol. 37, 2378–2397. https://doi.org/ 10.1002/joc.4852.
  18. Nouri, M., & Homaee, M. 2022. Reference crop evapotranspiration for data-sparse regions using reanalysis products. Agricultural Water Management, 262, 107319.
  19. Paredes, P., Martins, D.S., Pereira, L.S., Cadima, J., Pires, C., 2018. Accuracy of daily estimation of grass reference evapotranspiration using ERA-Interim reanalysis products with assessment of alternative bias correction schemes. Agric. Water Manag. 210, 340–353. https://doi.org/10.1016/j.agwat.2018.08.003.
  20. Rienecker, M.M., Suarez, M.J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M.G., Schubert, S.D., Takacs, L., Kim, G., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R.D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C.R., Reichle, R., Robertson, F.R., Ruddick, A.G., Sienkiewicz, M., Woollen, J., 2011. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 24 (14), 3624–364 https://doi.org/10.1175/JCLI-D-11-00015.1.
  21. Rodell, M., 2020. LDAS Land Data Assimilation Systems. https://ldas.gsfc.nasa.gov/nl das/.
  22. Tarek, M., Brissette, F. P., & Arsenault, R. 2020. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrology and Earth System Sciences, 24(5), 2527-2544.
  23. Thomas, S. R., Nicolau, S., Martínez‐Alvarado, O., Drew, D. J., & Bloomfield, H. C. 2021. How well do atmospheric reanalyses reproduce observed winds in coastal regions of Mexico? Meteorological Applications, 28(5), e2023.
  24. Uppala, S.M., Kållberg, P.W., Simmons, A.J., Andrae, U., da Costa Bechtold, V., Fiorino, M., Gibson, J.K., Haseler, J., Hernandez, A., Kelly, G.A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R.P., Andersson, E., Arpe, K., Balmaseda, M.A., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., H´olm, E., Hoskins, B.J., Isaksen, L., Janssen, P.A.E.M., Jenne, R., McNally, A.P., Mahfouf, J.F., Morcrette, J.J., Rayner, N.A., Saunders, R.W., Simon, P., Sterl, A., Trenberth, K.E., Untch, A., Vasiljevic, D., Viterbo, P., Woollen, J., 2005. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. https://doi.org/10.1256/qj.04.176.
  25. Wilhite, D.A., 2000. Drought as a Natural Hazard: Concepts and Definitions.Wright, J.L., Jensen, M.E., 1972. Peak water requirements of crops in southern Idaho. Proc. Am. Soc. Civ. Eng. J. Irrig. Drain. Div. 98 (IR2), 193–201.
  26. Xin, Y., Lu, N., Jiang, H., Liu, Y., & Yao, L. 2021. Performance of ERA5 reanalysis precipitation products in the Guangdong-Hong Kong-Macao greater Bay Area, China. Journal of Hydrology, 602, 126791.