نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گرایش آبیاری و زهکشی گروه مهندسی آب دانشگاه گیلان

2 دانشیار گروه مهندسی آب دانشگاه گیلان و عضو وابسته پژوهشی گروه مهندسی آب و محیط‌زیست پژوهشکده حوضه آبی دریای خزر دانشگاه گیلان.

3 دانشیار گروه مهندسی آب دانشکده علوم کشاورزی دانشگاه گیلان و عضو وابسته پژوهشی گروه مهندسی آب و محیط زیست پژوهشکده حوضه آبی دریای

چکیده

برای کنترل سطح ایستابی هنگام برداشت محصول برنج و کشت گیاه دوم در اراضی شالیزاری، احداث سامانه‌های زهکشی اجتناب‌ناپذیر است. یافتن بهترین گزینه طراحی زهکش از دیدگاه مسائل محیطی و اقتصادی اهمیت بسیاری دارد. پژوهش حاضر با هدف بررسی عملکرد زهکش روباز در کنترل سطح ایستابی در کشت گیاه برنج و گیاه دوم در اراضی شالیزاری انجام شد. در این راستا، عملکرد زهکش‌های روباز شامل بار آبی و شدت تخلیه آب به زهکش در دوره رشد گیاهان برنج و کشت دوم با استفاده از مدل HYDRUS-2D شبیه‌سازی شد. برای واسنجی و اعتبارسنجی مدل HYDRUS-2D، اطلاعات مورد نیاز از 130 هکتار از اراضی شالیزاری روستاهای نوده، جیرسر و نوپاشان در شهرستان صومعه‌سرا، در سال 1398 برداشت شد. پارامترهای بافت خاک، جرم مخصوص ظاهری و حقیقی، تخلخل و سرعت نفوذ اندازه‌گیری شدند. همچنین بار آبی به‌صورت ماهانه در منطقه اندازه‌گیری شد. پس از اعتبارسنجی مدل HYDRUS-2D، گزینه‌های مختلف طراحی زهکش روباز شامل عمق و عرض کف در مدل اجرا و نتایج آن مورد مقایسه قرار گرفت. بررسی نتایج شبیه‌سازی نشان داد که مدل HYDRUS-2D دقت مناسبی در شبیه‌سازی روند تغییرات بار آبی دارد. شاخص‌های ارزیابی مدل شامل R2، RMSE، nRMSE و MAE در مرحله واسنجی به ترتیب 0/98، 4/39 سانتی‌متر، 1/6% و 3/55 سانتی‌متر و در مرحله اعتبارسنجی به ترتیب 98/0، 4/33 سانتی‌متر،1/67% و 3/37 سانتی‌متر به‌دست آمد. نتایج شبیه‌سازی نشان داد که زهکش روباز با عمق و عرض کف 200 و 170 سانتی‌متر در طول دوره کشت برنج و کشت دوم به ترتیب با میزان تخلیه زه‌آب برابر 726440 و 169960 سانتی‌متر مکعب بر واحد طول زهکش و ضریب عکس‌العمل به ترتیب 0/293 و 0/583 در روز، دارای بالاترین عملکرد در کنترل سطح ایستابی بود. مقادیر ضرایب عکس‌العمل نشان داد که زهکش روباز پتانسیل خوبی برای دستیابی به اهداف زهکشی شامل توسعه برداشت مکانیزه برنج و همچنین توسعه کشت دوم در منطقه نداشت.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of the Dimensions of Open Drains in Paddy Fields of Land Consolidation Project

نویسندگان [English]

  • Tahereh Gholami Estalkhi Kohi 1
  • Maryam Navabian 2
  • Mehdi Esmaeili Varaki 3

1 M. Sc. Student of Water Eng. Dep., Faculty of Agricultural Sciences, University of Guilan

2 Associated Prof., Water Eng. Dept., Faculty of Agricultural Sciences, University of Guilan; and Dept. of Water Eng. and Environment, Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.

3 Associated Prof. of Water Eng. Dep., Faculty of Agricultural Sciences, University of Guilan and Dep. of Water Eng. and Environment, Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran

چکیده [English]

Construction of drainage systems is inevitable in paddy fields to control the level of waterlogging during rice harvest and cultivation of the second crop. Finding the best design option of drainage is very important from the point of view of environmental and economic issues. This study was conducted with the aim of investigating the performance of open drains including pressure head and depletion flux in controlling the water level in the cultivation of rice plants and the second plant in paddy fields. In this regard, the performance of open drains during rice and the second crop growth period was simulated using HYDRUS-2D model. To calibrate and validate HYDRUS-2D model, the required information was collected from 130 hectares of paddy fields in Nodeh, Jirsar and Nupashan villages in Soumesara region, in 2019. Soil texture, bulk and specific density, porosity and infiltration rate were measured. Also, pressure head of water was measured monthly in the region by piezometers. After validation, different open drain design options (bottom width and depth of drain) were run in HYDRUS-2D and its results were compared. The simulation results showed that the HYDRUS-2D had a reasonable accuracy in simulating the changes in water pressure head. The statistical indexes including R2, RMSE, nRMSE and MAE in the calibration stage were 0.98, 4.39 cm, 1.6%, and 3.55 cm, respectively, and 0.98, 4.33 cm, 1.67%, and 3.37 cm in the validation stage, respectively. The results showed that the open drain with a depth and bottom width of, respectively, 200 and 170 cm had the best performance for controlling water table during rice and the second crop cultivation, with a discharge rate of 726440 and 169960 cm3 per unit of drain length, and the reaction coefficient of 0.293 and 0.583 per day, respectively.

کلیدواژه‌ها [English]

  • Water table
  • Drainage depth
  • Drain bottom width
  • HYDRUS-2D
  1. احمدی، ک.، عبادزاده، ح. ر.، عبدشاه، ه.، کاظمیان، آ. و رفیعی، م. 1397. آمارنامه کشاورزی سال زراعی 96-1395، جلد اول: محصولات زراعی، وزارت جهاد کشاورزی،معاونت برنامه‌وبودجه، اداره کل آمار و اطلاعات، 116صفحه.
  2. احمدی، ک.، عبادزاده، ح. ر.، حاتمی، ف.، عبدشاه، ه. و کاظمیان، 1399. آمارنامه کشاورزی جهاد کشاورزی، جلد اول: محصولات زراعی.
  3. عظیمی، ر. 1386. تحلیلی بر روند اجرایی طرح تجهیز، نوسازی و یکپارچه‌سازی اراضی شالیزاری استان مازندران، انتشارات جهاد کشاورزی ساری.
  4. پیرمرادیان، ن.، ذکری، ف.، رضایی، م. و عبدالهی، و. 1392. استخراج ضرایب گیاهی سه رقم برنج بر پایه روش برآورد تبخیر-تعرق مرجع در منطقه رشت، نشریه تحقیقات غلات، شماره 2، صفحه‌های 106-95.
  5. محمدپور، ف. 1398. بررسی اثر خصوصیات ترانشه بر عملکرد زهکش زیرزمینی در خاک رسی با استفاده از مدل HYDRUS-2D، پایان‌نامه کارشناسی ارشد مهندسی آب، دانشکده کشاورزی، دانشگاه گیلان.
  6. معماری، ن.، نوابیان، م.، پیرمرادیان، ن. و اصفهانی، م. ۱۳۹ ارزیابی عملکرد زهکش زیرزمینی بر رشد گیاه لوبیا محلی در اراضی شالیزاری با استفاده از مدل فیزیکی. مجله تحقیقات آب‌وخاک ایران، دوره 49 ، شماره 6، صفحه‌های 1255-1244.
  7. مومن‌نژاد، ز. 1397. مقایسه کارایی مدل‌های SWAP و DRAINMOD در شبیه‌سازی عملکرد زهکش زیرزمینی کنترل‌شده در مقیاس مدل فیزیکی اراضی شالی‌زاری، پایان‌نامه کارشناسی ارشد مهندسی آب، دانشکده کشاورزی، دانشگاه گیلان.
  8. مومن‌‌نژاد، ز.، نوابیان، م.، و اسمعیلی ورکی، م. 1398. ارزیابی مدل DRAINMOD با استفاده از مدل فیزیکی در شبیه‌سازی عملکرد زهکشی زیرزمینی میان‌فصل و پایان‌فصل اراضی شالیزاری، مجله تحقیقات آب‌وخاک ایران، دوره 50، شماره 1، صفحه‌های 13-24.
  9. نشریه 467 دفتر نظام فنی اجرایی. 1387. دستورالعمل تجزیه‌های آزمایشگاهی آب‌وخاک، معاونت برنامه‌ریزی و نظارت راهبردی رئیس‌جمهور، جلد، 287 صفحه.
  10. Belmans, C., Wesseling, J. G., and Feddes, R. A. 1983. Simulation model of the water balance of a cropped soil: SWATRE, Journal of hydrology, Vol 63: 271-286.
  11. Bannayan, M. and Hoogenboom, G. 2009. Using pattern recognition for estimating cultivarcoefficients of a crop simulation model, Field Crops Research, 1: 290-302.
  12. Chen, K., Yu, S., Ma, T., Ding, J., He , P., Li, Y., Dai, Y. and Zeng, G. 2022. Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D. Agriculture, 12, 924.
  13. Ebrahimian, H., Liaghat, A., Parsinejad, M., Abbasi, F. and Navabian, M. 2012. Comparison of one and two-dimensional models to simulate alternate and conventional furrow fertigation, Journal of Irrigation and Drainage Engineering, 138 (10): 929-938.
  14. Feddes, R. A., Kowalik, P. J., and Zaradny, H. 1978. Simulation of Field Water Use and Crop Yield, John Wiley & Sons, New York, NY.
  15. Hunt, N., and Gilkesو 1992. Farm monitoring handbook- A practical down-to-earth manual for farmers and other land users, University of Western Australia: Nedlands, W. A. and Land Management Society: Como, W.A.
  16. Jamieson, P. D., Poeter, J. R., and Wilson, D. R. 1991. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand, Field crop research, Vol 27: 337-350.
  17. Phogat, V., Yadav, A. K., Malik, R. S., Kumar, S. and Cox, J. 2010. Simulation of salt and water movement and estimation of water productivity of rice crop irrigated with saline water, Paddy Water Environ, 8 (4): 333-346.
  18. Simunek, J., Sejna, M. and Van Genuchten, M. Th. 1999. The HYDRUS-2D V. 2 software package for simulating water flow and solute transport in two-dimensional variably saturated media. US Salinity Laboratory, Agricultural Research Service, US Department of Agriculture, Riverside, Calif.
  19. Šimůnek, J., Van Genuchten, M. Th., and Šejna, M. 2006. The HYDRUS Software Package for Simulating Two- and Three Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Version 1.0, PC Progress, Prague, Czech Republic.
  20. Van Genuchten, M. Th. 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils”, Soil Science Society American Journal, 44: 892-898.
  21. Yang, R., Tong, J., Hu, B. X., Li, J., and Wei, W. 2017. Simulating water and nitrogen loss from an irrigated paddy field under continuously flooded condition with Hydrus-1D model. Environmental Science Pollutant Resource. 24(17):15089-15106.
  22. Zhang, J., Zhu,Y., Yu, L., Yang, M., Zou, X., Yin, C., and Lin, Y. 2022. Research Advances in Cadmium Uptake, Transport and Resistance in Rice (Oryza sativa L.). MDPI. 11:569.