اثر تنش خشکی و شوری در برآورد عملکرد ذرت علوفه‌ای از طریق تبخیر-تعرق دوره‌ای، با استفاده از مدل‌های مختلف

نوع مقاله : مقاله پژوهشی

نویسنده

دکترای آبیاری و زهکشی، گروه مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین‌المللی امام خمینی(ره)، قزوین، ایران.

چکیده

تعیین حساسیت درون فصلی تبخیر-تعرق ذرت نسبت به تنش‌های محیطی، اثر مهمی بر مدل‌سازی دقیق‌تر عملکرد محصول می‌گذارد. در این پژوهش، اثر تنش‌های خشکی و شوری بر تبخیر-تعرق نسبی (در مراحل اولیه، توسعه، میانی و پایانی رشد) و عملکرد نسبی ذرت در مزرعه­ای با خاک لومی شنی بررسی شد. تیمارهای شوری از طریق آب دارای هدایت ‌الکتریکی 0/5، 2/1، 3/5 و 5/7 دسی زیمنس بر متر اِعمال شد. تیمارهای خشکی نیز شامل چهار سطح آبیاری بر اساس (I0) 100%، (I1) 80%، (I2) 60% و (I3) 40% نیاز آبی گیاه ذرت در نظر گرفته شد. آزمایش به‌صورت فاکتوریل، در قالب طرح بلوک‌های کامل تصادفی و با سه تکرار انجام شد. مقدار تبخیر-تعرق نسبی ذرت در مراحل اولیه، توسعه، میانی و پایانی رشد به ترتیب بین 100- 63/5%، 100- 62/6%، 100- 55/2% و 100- 66/4% برآورد شد. مقدار عملکرد نسبی ذرت نیز در تیمارهای I0S0 تا I3S3  بین 100- 42/6% محاسبه شد. نتایج نشان داد تنش‌های شوری و خشکی باعث کاهش تبخیر-تعرق و عملکرد ذرت شد و همچنین در مراحل حساس رشد، تبخیر-تعرق با شیب بیشتری کاهش یافت. اعمال تنش‌های مذکور در مراحل حساس رشد باعث اختلال در گل‌دهی و میوه دهی ذرت شد. در این پژوهش با استفاده از مدل‌های جمع‌پذیر بلنک، استوارت، سینگ و مدل‌های ضرب‌پذیر جنسن، رائو و مینهاس، عملکرد نسبی ذرت مدل‌سازی شد. نتایج نشان داد، مدل‌ استوارت با ضرایب حساسیت (در چهار مرحله رشد) برابر با 0/227، 0/416، 0/604، 0/14 و مدل جنسن با ضرایب حساسیت 0/301، 0/41، 0/608، 0/147 به‌عنوان مدل‌های بهینه انتخاب شدند. اما مدل‌های رائو، بلنک، سینگ و مینهاس در اولویت‌های بعدی قرار گرفتند. بنابراین در شرایط تنش‌های شوری و خشکی، عملکرد نسبی ذرت بر اساس مقدار تبخیر-تعرق آن در مراحل رشد مدلسازی شد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Drought and Salinity Stress on Estimation of Forage Maize Yield through Periodic Evapotranspiration Using Different Models

نویسنده [English]

  • reza saeidi
Department of Water Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.
چکیده [English]

Determining the intra-seasonal sensitivity of maize evapotranspiration to environmental stresses has an important effect on modeling of yield. In this research, the effect of drought and salinity stresses were investigated on the relative evapotranspiration (during initial, development, mid, and late stages) and relative yield of maize, in a field with sandy loam soil texture. Salinity treatments were applied by water with EC of 0.5(S0), 2.1(S1), 3.5(S2), and 5.7(S3)   dS.m-1. Drought treatments included four irrigation levels of 100% (I0), 80% (I1), 60% (I2), and 40% (I3) of the crop water requirement. The experiment was performed as factorial in a randomized complete block design, with three replications. The relative evapotranspiration of maize in the initial, development, middle and final stages was estimated between 63.5-100%, 62.6-100%, 55.2-100%, and 66.4-100%, respectively. The relative yield of maize in the I0S0 to I3S3 treatments was calculated between 42.6-100%. The results showed that salinity and drought stresses reduced both the evapotranspiration and maize yield. Also, evapotranspiration decreased with a steeper slope in sensitive growth stages compared to yield. Effect of the mentioned stresses at sensitive growth stages caused disruption in the flowering and fruiting of maize. In this study, the relative yield of maize was modeled by additive models of Blank, Stuart, Singh and multipliable models of Jensen, Rao, and Minhas. According to the results, Stewart model with sensitivity coefficients (in four growth stages) of 0.227, 0.416, 0.604, 0.14 and Jensen model with sensitivity coefficients of 0.301, 0.41, 0.608, and 0.147 were selected as the optimal models. However, Rao, Blank, Singh, and Minhas models were chosen as the next priorities. Therefore, under salinity and drought stress, the relative yield of maize was modeled based on the amount of evapotranspiration in the growth stages.

کلیدواژه‌ها [English]

  • Experimental models
  • Growth stages
  • Relative evapotranspiration
  • Relative yield
  • Sensitivity coefficients
  1. ابراهیمی زاده، م. ع. و ع. م. حسن‌لی. 1387. بررسی توسعه ریشه ذرت و تأثیر آن بر کاهش مصرف آب در روش‌های مختلف آبیاری با پساب در دشت نیمه‌خشک کربال در استان فارس. مجله علوم و فنون کشاورزی و منابع طبیعی. 12(44): 82-69.
  2. اکبری نودهی، د. 1396. تأثیر تنش خشکی در مراحل مختلف رشد بر عملکرد و بهره‌وری مصرف آب ذرت. مجله مدیریت آب و آبیاری. 7(2): 305-308.
  3. جارالهی، ر. 1380. تعیین ضریب آب سهل‌الوصول در مراحل مختلف رشد برای ذرت دانه‌ای در کرج. مجله علوم آب و خاک. 15(2): 290-298.
  4. حیدری‌نیا، م. ناصری، ع. برومندنسب، س. و م. الباجی. 1396. تأثیر آبیاری با آب شور بر تبخیر و تعرق و کارایی مصرف آب ذرت در مدیریت‌های مختلف زراعی. مجله علوم و مهندسی آبیاری. 40(1/1): 99- 110.
  5. سعیدی، ر. ستوده‌نیا، ع. رمضانی اعتدالی، ه. کاویانی، ع. و ب. نظری. 1397. مطالعه تأثیر تنش‌های شوری آب و حاصلخیزی خاک، بر تبخیر‌‌ و‌‌‌ تعرق ذرت علوفه‌ای. مجله تحقیقات آب و خاک ایران. 49(4): 945- 954.
  6. سعیدی، ر. رمضانی اعتدالی، ه. ستوده‌نیا، ع. نظری، ب. و ع. کاوریانی. 1399. مدیریت مصرف آب شور و کود نیتروژن در کشت ذرت. مجله آب و خاک. 34(4): 861- 877.
  7. سعیدی، ر. و ع. ستوده‌نیا. 1400. واکنش عملکرد به تبخیر-تعرق ذرت، تحت تأثیر تنش آبی در مراحل مختلف رشد (در دشت قزوین). مجله تحقیقات آب و خاک ایران. 52(3): 611- 620.
  8. سعیدی‌نیا، م. نصراللهی، ع. ح. و م. شریفی پور. 1398. بررسی توانایی شاخص تنش آبی گیاه در برنامه‌ریزی آبیاری و برآورد میزان عملکرد ذرت علوفه‌ای. مجله تحقیقات آب و خاک ایران. 50(3): 555-565.
  9. محمدی، م. محمدی قلعه‌نی، م. و ک. ابراهیمی. 1390. تغییرات زمانی و مکانی کیفیت آب زیرزمینی دشت قزوین. مجله پژوهش آب ایران. 5(8): 41- 52.
  10. محمدی بهمدی، م. و م. آرمین. 1396. اثر تنش خشکی بر عملکرد و اجزای عملکرد ارقام مختلف ذرت در شرایط کشت تأخیری. نشریه تحقیقات کاربردی اکوفیزیولوژی گیاهی. 4(1): 17- 34.
  11. همتی، ر. مقصودی، ک. و ا. یحیی. 1393. پاسخ مورفولوژیک ذرت به تنش خشکی در مراحل مختلف رشد در منطقه نیمه خشک شمال فارس. مجله تولید و فراوری محصولات زراعی و باغی. 4(11): 67- 74.
  12. Allen, R. G. Pereira, L. S. Raes, D. and M. Smith. 1998. Crop evapotranspiration. Guidelines for Computing Crop Water Requirements. FAO Irrigation Drainage Paper No.56, 1-326.
  13. Azizian, A. and A. R. Sepaskhah. 2014. Maize response to water, salinity and nitrogen levels: yield-water relation, water-use efficiency and water uptake reduction function. Journal of Plant Production. 8(2): 183- 214.
  14. Blank, H. 1975. Optimal irrigation decisions with limited water. Ph. D. dissertation, Colorado State University, Fort Collins, CO.
  15. Doorenbos, J. and W. O. Pruitt. 1977. Guidelines for predicting crop water requirements, Food and agriculture organization (FAO) of the United Nations, Irrigation and drainage paper No. 24. Rome, Italy.
  16. Jensen, M. E. 1968. Water consumption by agricultural plants. In: T.T. Kozlowski (ed.), Water deficits in plant growth. (pp. 1–22). Academic Press, New York, NY.
  17. Kipkorir, E. D. and D. Raes. 2002. Transformation of yield response factor into Jensen’s sensitivity index. Journal of Irrigation and Drainage Systems. 16: 47–52.
  18. Lacerda, C. F. Ferreira, J. F. S. Liu, X. and D. L. Suarez. 2016. Evapotranspiration as a criterion to estimate nitrogen requirement of maize under salt stress. Journal of Agronomy and Crop Science. 202 (2016): 192-202.
  19. Minhas, B. Parikh, K. and T. Srinivasan. 1974. toward the structure of a production function for wheat yields with dated inputs of irrigation water. Journal of Water Resource. 10(3): 383–393.
  20. Nielsen, R. L. 2002. Drought and heat stress effects on corn pollination. Journal of Agronomy (Purdue). 196: 19-25.
  21. Rao, N. Sarma, P. and S. Chander. 1988. A simple dated water-production function for use in irrigated agriculture. Journal of Agriculture water management. 13(1): 25-32.
  22. Saeidi, R. Ramezani Etedali, H. Sotoodenia, A. Kaviani, A. and B. Nazari. 2021. Salinity and Fertility Stresses modifies and Readily Available Water Coefficients in Maize (Case study: Qazvin region). Journal of Irrigation Science. 39: 299- 313.
  23. She, R. Tong, L. Du, T. and M. Shukla. 2020. Response and Modeling of Hybrid Maize Seed Vigor to Water Deficit at Different Growth Stages. Journal of Water. 12(11): 1-20.
  24. Singh, P. Wolkewitz, H. and R. Kumar. 1987. Comparative performance of different crop production functions for wheat (Triticum aestivum L.). Journal of Irrigation Science, 8(4): 273–290.
  25. Stewart, J. Hagan, R. and W. Pruitt. 1976. Production functions and predicted irrigation programmers for principal crops as required for water resources planning and increased water use efficiency. Final Report. Department of Interior, Washington, D.C.
  26. Xin, H. Peiling, Y. Shumei, R. Yankai L. Guangyu, J. and L. Lianhao. 2016. Quantitative response of oil sunflower yield to evapotranspiration and soil salinity with saline water irrigation. Journal of Agriculture and Biology Engineering. 9(2): 63-73.