تأثیر غلظت‌های مختلف سلنیوم بر برخی خصوصیات مورفولوژیکی و فیزیولوژیکی بالنگوی شهری در رژیم‌های مختلف آبیاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران

2 دانشیار، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران

3 کارشناسی تولیدات گیاهی-گیاهان دارویی و معطر، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، پردیس کشاورزی و منابع

چکیده

 
خشکی یکی از مهم‌ترین محدودیت‌های تولید کشاورزی در سراسر جهان است. سلنیوم از طریق افزایش میزان ترکیبات و آنزیم‌های آنتی‌اکسیدانی نقش مهمی در تحمل گیاهان به تنش‌های محیطی دارد. به‌منظور بررسی اثر سلنیوم بر خصوصیات مرفولوژیکی و فیزیولوژیکی بالنگوی شهری تحت رژیم‌های مختلف آبیاری، آزمایشی به صورت فاکتوریل بر پایه طرح کامل تصادفی با سه تکرار در شرایط گلخانه اجرا گردید. فاکتور اول شامل سطوح مختلف تنش خشکی (100%، 75%، 50% و 25% ظرفیت زراعی) و فاکتور دوم شامل غلظت‌های مختلف سلنیوم (صفر، 5 و 10 میلی‌گرم بر لیتر سلنات سدیم) بود. براساس نتایج به‌دست آمده، خشکی اثر منفی بر میزان وزن تر گیاه، وزن تر و خشک برگ، عملکرد بیولوژیکی و عملکرد بذر بالنگوی شهری داشت. اما، تحت تنش خشکی، محلول‌پاشی سلنیوم سبب افزایش معنی‌دار ارتفاع گیاه (2/32 سانتی‌متر)، میزان پرولین (92/0 میلی‌گرم بر گرم وزن خشک) و فنول کل (82/0 میلی‌گرم بر گرم وزن خشک) شد. با افزایش غلظت سلنیوم ویژگی‌های فیزیولوژیکی مورد مطالعه‌ی (محتوی نسبی آب برگ (10/65 %) قند محلول کل (55/2 میلی‌گرم بر گرم وزن خشک)، پروتئین کل (289/0 میلی‌گرم بر گرم وزن خشک) و ظرفیت آنتی‌اکسیدانی (21/0 %) برگ بالنگوی شهری افزایش یافت. میزان غلظت 10 میلی‌گرم بر لیتر سلنات سدیم تأثیر مثبتی بر وزن تر گیاه و عملکرد بیولوژیکی بالنگوی شهری داشت که احتمالاً با نقش آنتی‌اکسیدانی سلنیوم همراه است. تحت شرایط تنش خشکی، سلنیوم میزان پرولین و فنول کل را افزایش داد که افزایش این اسمولیت‌های سازگار نقش مهمی در تحمل بالنگوی شهری به خشکی داشت.
 

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Different Concentrations of Selenium on Some Morphological and Physiological Characteristics of Dragons Head (Lallemantia iberica) under Different Irrigation Regimes

نویسندگان [English]

  • masoomeh amerian 1
  • alireza Zebarjadi 2
  • javaneh alsadat mehrabi 3
1 Assistant Professor, Department of Production Engineering and Plant Genetics, Faculty of Science and Agricultural Engineering, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
2 Associate Professor, Department of Production Engineering and Plant Genetics, Faculty of Science and Agricultural Engineering, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
3 Undergraduate Plant Production-Medicinal and Aromatic plant, Department of Production Engineering and Plant Genetics, Faculty of Science and Agricultural Engineering, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
چکیده [English]

 
Drought is one of the major constraints on agricultural productivity worldwide. Selenium plays an important role in plants tolerance to environmental stresses by increasing the levels of antioxidant enzymes and compounds. In order to investigate the effect of selenium on some growth and physiological characteristics of the Dragons head (Lallemantia iberica), a factorial experiment was conducted in a completely randomized design with three replications in greenhouse conditions. Treatments included different levels of drought stress (100%, 75%, 50% and 25% field capacity) and different concentrations of selenium (0, 5 and 10 mg.L-1 sodium selenate). Foliar application of sodium selenate was performed in two stages. According to the results, drought stress had a negative effect on fresh and dry weight leaf and yield. But, under drought stress conditions, foliar selenium caused a significant increase in plant height (32.2 cm), proline (0.92 mg/g DW), and total phenol (0.82 mg/g DW) content. Increase in selenium concentration increased Dragons head physiological properties: relative leaf water content (65.10 %), total soluble sugar (2.55 mg/g DW), soluble protein (0.289 mg/g DW), and antioxidant activity (0.21 %). Concentration of 10 mg.L-1 sodium selenate had a positive effect on plant fresh weight and biological yield of Dragons head, which was probably associated with the antioxidant role of selenium. Under drought stress, selenium increased the amount of proline and total phenol, which increased these adaptation osmolytes and had an important role in the drought tolerance of Dragons head.

کلیدواژه‌ها [English]

  • Sodium selenate
  • Antioxidant
  • Drought stress
  • Total phenol
  • Proline
  1. 1.                      آزاد م، رستمی م، قبولی م و موحدی ز، 1397. برهمکنش تنش شوری و اسید سالیسیلیک بر صفات فیزیولوژیک بالنگو (Lallemantia iberica). مجله پژوهش‌های گیاهی (مجله زیست شناسی ایران)، 2 (31): 13-1.
  2. 2.                      اردلانی ش، جلالی هندمند س، قبادی ما و عبدلی م، 1394. اثر تنش خشکی پس از گرده افشانی بر برخی صفات زراعی و فیزیولوژیک مرتبط با قدرت منبع در چهار ژنوتیپ گندم نان. تحقیقات غلات، 5(1): 65-45
  3. 3.                      داوری‌نژاد غ ح، شیربانی س و زراعی م، 1394. اثر رژیم‌های کم آبیاری روی برخی از خصوصیات مورفوفیزیولوژیکی چهار رقم انجیر. نشریه علوم باغبانی (علوم و صنایع کشاورزی)، 29(4): 517-501.
  4. 4.                      محبی ش، بابالار م، زمانی ذ، عسکری سرچشمه م ع، 1398. تأثیر محلول‌پاشی تاج درخت با سدیم سلنات بر غنی سازی زیستی سلنیوم و حفظ کیفیت میوه سیب ’ استارکینگ دلیشس‘ در طول دوره انبارمانی. علوم باغبانی ایران،50(3): 514-501.
  5. 5.                      مصطفوی ر و جلیلیان ج، 1398. بررسی تغییرات عملکرد، خصوصیات فیزیولوژیک و کیفیت بالنگوی شهری (Lallemantia iberica)  تحت تأثیر کودهای شیمیایی، زیستی-آلی و دفعات آبیاری. زراعت دیم ایران، 8(1): 19-1.
  6. 6.                      مظفری س، خراسانی نژاد س و گرگینی شبانکاره ح، 1395. اثر مقادیر آبیاری بر اساس درصد ظرفیت زراعی و کاربرد اسید هیومیک بر برخی (Portulaca oleracea L.) ویژگی‌های مورفوفیزیولوژیکی گیاه دارویی خرفه. نشریه تولید گیاهان زراعی، 9(3): 175-153.
  7. 7.                      شیخی سنندجی د و پیرزاد ع ر. 1398. مطالعه پاسخ اکوفیزیولوژیک بالنگوی شهری (Lallemantia iberica L.) در شرایط دیم به کاربرد خارجی تنظیم کننده‌های اسمزی. بوم شناسی کشاورزی، 11(3): 1105-1121.
  8. 8.                      شیخی سنندجی د و پیرزاد ع ر، 1398. ارزیابی محلول‌پاشی عناصر ریزمغذی روی و سیلیسیم بر خصوصیات زراعی، فیزیولوژیکی و بیوشیمیایی بالنگوی شهری در شرایط دیم و آبیاری تکمیلی. زراعت دیم، 8 (1): 21-42.
  9. 9.                     Ahanger MA, Tomar NS, Tittal M, Argal S and Agarwal RM, 2017. Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiology and Molecular Biology of Plants 23(4): 731–744.
  10. Ahmad R, Waraich E A, Nawaz F, Ashraf MY and Khalid M, 2016. Selenium (Se) improves drought tolerance in crop plants–a myth or fact? Journal of the Science of Food and Agriculture 96(2): 372-380.
  11. Amanzadeh YN, Khosravi Dehaghi AR, Gohari HR, Monsef-Esfehani S.E and Sadat Ebrahimi SE, 2011. Antioxidant activity of essential oil of Lallemantia iberica in flowering stage and post-flowering stage. Tehran University of Medical Sciences. Research Journal of Biological Sciences 6(3): 114-117.
  12. Bhatt RM and Srinivasa-Rao NK, 2005. Influence of pod load on response of okra to water stress. Indian Journal Plant Physiology10: 54-59.
  13. Chu J, Yao Xand Zhang Z, 2010. Responses of wheat seedlings to exogenous selenium supply under cold stress. Biol. Biological Trace Element Research 136: 355–363.
  14. Deepak SB, Thakur A, Singh S, Bakshi M and Bansal S, 2019. Changes in crop physiology under drought stress: A review. Journal of Pharmacognosy and Phytochemistry 8(4): 1251-1253.
  15. Degu HD, Ohta M, and Fujimura T, 2008. Drought tolerance of Eragrostis tef and development of roots. International Journal of Plant Sciences 169: 768–775.
  16. Del Buono D, Ioli G, Nasini L and Proietti P, 2011. A comparative study on the inter-ference of two herbicides in wheat and Italian ryegrass and on their antioxidant activities and detoxification rates. Journal of Agricultural and Food Chemistry 59: 12109–12115.
  17. Djanaguiraman M, Prasad PVV and Seppänen M, 2010. Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiology and Biochemistry 48: 999–1007.
  18. Habibi G, 2013. Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley. Acta agriculturae Slovenica 101(1):31–39.
  19. Hasanuzzaman M and Fujita M, 2011. Selenium pretreatment up-regulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biological Trace Element Research 143: 1758–1776.
  20. Hasanuzzaman M, Hossain MA and Fujita M, 2010. Selenium in higher plants: phys-iological role, antioxidant metabolism and abiotic stress tolerance. Journal of Plant Sciences 5: 354–375.
  21. Hawrylak-Nowak B, 2009. Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biological Trace Element Research 132: 259–269.
  22. Jaleel CA, Manivannan P, Lakshmanan GMA, Gomathinayagam M and Panneerselvam R, 2008. Alterations in morphological parameters and photosynthetic pigment responses of Catharanthusroseus under soil water deficits. Colloids Surf. B: Biointerfaces 61: 298-303.
  23. Kuznetsov VV, Kholodova V, Kuznetsov VV and Yagodin B, 2003. Selenium Regulates the Water Status of Plants Exposed to Drought. Doklady Biological Sciences 390: 266–268.
  24. Motesharezadeh B, Ghorbani S and Alikhani HA, 2019. The effect of selenium biofortification in alfalfa (Medicago sativa). Journal of Plant Nutrition. https://doi.org/10.1080/01904167.2019.1676900.
  25. Motesharezadeh B, Ghorbani S, Alikhani HA, Fatemi R and Ma Q, 2020. Investigation of Different Selenium Sources and Supplying Methods for Selenium Enrichment of Basil vegetable (A Case Study under Calcareous and Non-Calcareous Soil Systems). Recent Patents on Food, Nutrition & Agriculture. DOI: 10.2174/2212798411666200611101032
  26. Murphy LA, Reeves PG and Jones SS, 2014. Selenium and quality characteristics expressed in wheat breeding lines. Food Systemic Journal32: 52-63.
  27. Nawaz F, Ashraf MY, Ahmad R and Waraich EA, 2013. Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions. Biological Trace Element Research 151: 284–293.
  28. Paciolla C, Leonardis S and Dipierro S, 2011. Effects of selenite and selenate on the antioxidant systems in Senecio scandens L. Plant Biosystology 145: 253-259.
  29. Paquin R and Lechasseur P, 1979. Observation sur une method de dosage de la proline libre Dans les extrats deplants. Canadian Journal of Botany 75: 1851-1854.
  30. Rahimizadeh M, Habibi D, Madani H, Mohammadi GN, Mehraban A and Sabet AM, 2007. The effect of micronutrients on antioxidant enzymes metabolism in sunflower (Helianthus annus L.) under drought stress. Helia, 30(47): 167-174.
  31. Safaryazdi A., Lahoti M and ganjali A, 2012. Effect of different concentrations of selenium on plant physiological characteristics of spinach (Spinacia oleraceae). Journal of Horticultural Science 26(3): 292-300.
  32. Sajedi NA, Ardakani MR, Madani H, Naderi A and Miransari M, 2011. The effects of selenium and other micronutrients on the antioxidant activities and yield of corn (Zea mays L.) under drought stress. Physiology and Molecular Biology of Plants 17(3): 215-222.
  33. Schonfeld MA, Johnson RC, Carwer BF and Mornhinweg DW, 1988. Water relations in winter wheat as drought resistance indicators. Crop Science 28: 526-531.
  34. Seppänen MM, Kontturi J, Madrid J and Hartikainen H, 2015. Agronomic biofortification of wheat with selenium enrichment and its identification in Brassica seeds and meal. Plant Soil340: 501-510.
  35. Singleton VL and Rossi JA, 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology Viticulture 16: 144–153.
  36. Spadoni M, Voltaggio M, Carcea M, Coni E, Raggi A and Cubadda F, 2007. Bioaccessible selenium in Italian agricultural soils: comparison of biogeochemical and pedoclimatic variables. Science of Total Environment 376: 160–177.
  37. Srivastava M, Ma LQ, Rathinasabapathi Band Srivastata P, 2009. Effects of selenium on arsenic uptake in arsenic hyperaccumulator Pteris vittata L. Bioresource Technology 100: 1115-1121.
  38. Sun HW, Ha J, Liang SX and Kang WJ, 2010. Protective role of selenium on garlic growth under cadmium stress. Communications in Soil Science and Plant Analysis 41: 1195–1204.
  39. Wang CQ, 2011. Water-stress mitigation by selenium in Trifolium repens L. Journal of Plant Nutrition and Soil Science 174(2): 276–282.
  40. Yao X, Chu J and Wang G, 2009. Effects of selenium on wheat seedlings under drought stress. Biological Trace Element Research 130: 283–290.
  41. 13.                   Bradford MM, 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
  42. 15.                   D’Abrosca B, Pacifico S, Cefarelli G, Mastellone C and Fiorentino A, 2007. Limoncella apple, an Italian apple cultivar: phenolic and flavonoid contents and antioxidant activity. Food Chemistry 104: 1333-1337.
  43. 20.                   Du Y, Zhao Q, Chen L, Yao X, ZhangW, Zhang Band Xie F, 2020. Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiology and Biochemistry 146: 1-12.
  44. 21.                   Elkelish AA, Soliman MH, Alhaithloul HA and El-Esawi MA, 2019. Selenium protects wheat seedlings against salt stress-mediated oxidative damage by up-regulating antioxidants and osmolytes metabolism. Plant Physiology and Biochemistry 137:144-153.
  45. 22.                   Guo CY, Wang XZ, Chen L, Ma LN and Wang RZ, 2015. Physiological and biochemical responses to saline-alkaline stress in two halophytic grass species with different photosynthetic pathways. Photosynthetica 53(1): 128–135.
  46. 27.                   Hemmati M, Delkhosh B, Shirani Rad AH and Noor Mohammadi G, 2019. Effect of the application of foliar selenium on canola cultivars as influenced by different irrigation regimes. Journal of Aricultural Sciences 25: 309-318.
  47. 28.                   Irigoyen JJ, Emerrich DW and Sanchez–Diaz M, 1992. Water stress induction changes in concentrations of praline and total sugars in nodulated alfalfa. Plant Physiology 84: 55–60.
  48. 31.                   Moreno-Galvan AE, Cortes-Patino S, Romero-Perdomo F, Uribe-Velez D, Bashan Y and Bonilla RR, 2020. Proline accumulation and glutathione reductase activity induced by drought-tolerant rhizobacteria as potential mechanisms to alleviate drought stress in Guinea grass. Applied Soil Ecology 147, 103367.
  49. 35.                   Nawaz F, Ahmad R, Ashraf MY, Waraich EA and Khan SZ, 2015. Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicology and Environmental Safety 113: 191–200.
  50. 50.                   Zhang Z, Gao S and Shan C, 2020. Effects of sodium selenite on the antioxidant capacity and the fruit yield and quality of strawberry under cadmium stress. Scientia Horticulturae 260: 108876.