ارزیابی دقت برخی روش‌های صحرایی اندازه‌گیری رطوبت خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه مهندسی آب و خاک دانشگده کشاورزی دانشگاه شهرکرد.

2 استاد گروه مهندسی آب و خاک دانشکده کشاورزی دانشگاه شهرکرد.

3 استاد گروه مهندسی آب و خاک دانشکده کشاورزی دانشگاه ولی عصر رفسنجان.

4 دانشیار گروه مهندسی معدن، نفت و ژئوفیزیک دانشگاه صنعتی شاهرود.

5 استادیار گروه مهندسی آب و خاک دانشکده کشاورزی دانشگاه شهرکرد.

چکیده

آب خاک از عوامل مهم موثر در رشد گیاه است. روش­های متفاوتی برای تعیین آب خاک وجود دارد. از آنجا که تعیین رطوبت حجمی به روش آزمایشگاهی زمان­بر بوده و موجب برهم­خوردگی خاک می­شود، این پژوهش به منظور ارزیابی برخی روش­های صحرایی (درجا) اندازه­گیری رطوبت خاک انجام شد. برای اندازه­گیری رطوبت خاک از روشمقاومت الکتریکی با آرایش الکترودی ونر، روش رادار نفوذی به زمین با آنتن 700 مگاهرتز و دو حس­گر (thetaml2 وsm300در 72 نمونه خاک­هایی با بافت لوم، لوم­شنی، لوم­سیلتی، رسی­سیلتی، رسی­لومی و سیلتی­رسی­لومی در بخش­هایی از حوزه آبخیز شهرکرد استفاده شد. نتایج به­دست آمده ضریب همبستگی بین رطوبت خاک و عکس مقاومت الکتریکی زمین را 85/0 نشان داد. همچنین، ضریب همبستگی بین مقادیر حاصل از روش رادار زیرسطحی، حس­گر sm300و thetaml2با نتایج به­دست آمده از اندازه­گیری­های آزمایشگاهی به ترتیب برابر بود با 86/0، 94/0 و 86/0 و شاخص CRM 52/0- ، 75/0- و 22/1- بدست آمد. با مقایسه مقاومت ویژه الکتریکی، رطوبت به­دست آمده از رادار نفوذی به زمین و حس­گر sm300و thetaml2با رطوبت حجمی اندازه گیری شده در آزمایشگاه، مقادیر ریشه میانگین مربعات خطا به­ترتیب 41/8، 4، 3/5 و 6/8 و  RRMSEبه­ترتیب 10، 31، 29 و 26 به­دست آمد. آزمون دانکن بین رطوبت­ها نشان داد که اختلاف رطوبت به­دست آمده از حسگرها با رطوبت اندازه گیری شده در آزمایشگاه در سطح 5 درصد (05/0p<) معنی­دار بود. بر اساس نتایج ، حس­گر sm300دارای بالاترین میزان همبستگی و رادار نفوذی به زمین دارای کمترین خطا (RMSE) در بین سایر روش­ها بود. با توجه به مقدار RRMSEهمه حس­گرها تخمین مناسبی از رطوبت خاک داشتند. به­طور کلی، برای تعیین رطوبت حجمی نیمرخ خاک در مقیاس­های مزرعه تا زیر­حوضه، روش مقاومت الکتریکی، رادار زیرسطحی و حس­گر­های رطوبتی به ­دلیل سهولت استفاده و تعیین دامنه گسترده رطوبت خاک، می­تواند به­عنوان روشی اقتصادی و سریع بدون تخریب ساختمان خاک،مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating the Accuracy of Some Field Methods for Measurement of Soil Moisture

نویسندگان [English]

  • Samira mesry 1
  • Shoja Ghorbani 2
  • Hossin Shirani 3
  • Abolghasem Kamkar 4
  • hamidreza motaghian 5
1 Shahrekord university
5 Shahrekord university
چکیده [English]

Soil water is an important factor in the growth of the plant. There are different methods for soil moisture estimation. It is time-consuming to obtain volumetric soil moisture in a laboratory. This study was performed to evaluate estimate of soil moisture by different in situ methods including the electrical resistance of Werner electrode arrangement and ground penetration radar (GPR) from 700 MHz antenna, and two humidity sensors, namely, thetaml2 and sm300. These were used in 72 soil samples with different textures (loam, sandy clay loam and silty loam, silty clay, silty clay loam, clay loam) in parts of Shahrekord Watershed.The results showed that the coefficient of correlation between soil moisture and electrical resistance was 0.85. Also, the correlation coefficient between the values obtained from subsurface radar method, sm300 sensor and thetaml2 with the results obtained from laboratory measurements were 0.86, 0.94, 0.86, with CRM index values of -0.52, -0.75 and –1.22. By comparing the results of electrical resistivity, moisture from the GPR and the sm300 and thetaml2 sensors with volumetric moisture, the Root Mean Squared Error (RMSE) values were 8.41, 4, 5.3 and 8.6; and RRMSE were 10, 31, 29, and 26, respectively. Duncan test of moisture content showed that the difference between the sensors and the laboratory moisture content was significant at 5% level (p<0.05). According to the value of RRMSE All sensors had a good estimate of soil moisture. In conclusion, electrical resistivity and GPR method, due to higher sampling density, could be used as a rapid, cost effective, and non-destructive technique to estimate profile of soil water content at scales of field to sub-watershed.

کلیدواژه‌ها [English]

  • Ground electrical resistance
  • Ground penetration radar
  • Dielectric constant
  • Moisture sensor
  1. برادران مطیع، ج.، آق­خانی، م.ح.، عباسپورفرد، م.ح. و لکزیان، ا. 1389. ساخت و ارزیابی سامانه تهیه نقشه هدایت الکتریکی خاک مزرعه در حین حرکت. نشریه ماشین­های کشاورزی. جلد 1. 25-33.
  2. پرنو، س. 1393. پردازش و مدل­سازی و تفسیر داده­های GPR به منظور تعیین عمق، ضخامت و محدوده جانبی یخچال­ها در منطقه علم کوه مازندران. دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود.
  3. داوودی، م. ه. و گوهری، ا. 1383. معرفی روش مقاومت­سنجی الکتریکی جهت آزمایش غیرمخرب اندازه­گیری درجه اشباع نمونه­های خاک. مجله پژوهش و سازندگی. شماره 65.. 33-25.
  4. کلاگری ع. ا. 1375. اصول اکتشافات ژئوفیزیکی؛ چاپ اول؛ تهران: مؤلف.
  5. متقیان، ح. ع. و محمدی، ج. 1389. مقایسه برخی از شاخص­های فیزیکی کیفیت خاک در کاربری­های مختلف اراضی در حوضه مرغملک، شهرکرد (استان چهارمحال و بختیاری). نشریه آب و خاک (علوم و صنایع کشاورزی). 25(1): 124-115.
  6. Abidin, M.H.Z., Saad R., Ahmad F., Wijeyesekera D. Ch. and Yahya A.SH. 2013. Soil moisture content and density prediction using laboratory resistivity experiment. International Journal of Engineering and Technology, 5(6):731-735.
  7. Annan A. P. 2001. Ground penetrating radar workshop Notes, 197pp: sensors and software, Mississauga, Ontario, Canada.
  8. Baker, G., Jordan, T. and Pardy, J. 2007. An introduction to ground penetrating radar (GPR). The Geological Society of America, special paper 432, pp. 181.
  9. Benderitter, Y. and Schott, J.J. 1999. Short time variation of the resistivity in an unsaturated soil: The relationship with rainfall, Eur. Journal of Environmental and Engineering Geophysics., 4: 37-49.
  10. Cassidy, N.J., and Jol, H. M. 2009. Ground penetrating radar data processing, modelling and analysis. In Ground penetrating radar: theory and applications, International Journal of Geosciences Elsevier, Amsterdam: 141-176.
  11. Chik, Z., Murad O.F. and Rahmad M. 2015. Dependency of dry density of soil on water content in the measurement of electrical resistivity of soil. Journal of Engineering Research and Technology, 2(2):141-145.
  12. Hengle, T. and Husnjak, S. 2006. Evaluation adequacy and usability of soil maps in Croatia. Soil Science Society of America Journal, 70:920-929.
  13. Huisman, J.A., Speral, C., Buoten, W. and Verstraten, J.M. 2001. Soil water content measurements at different scales: accuracy of time domin reflectometry and ground-penetrating radar. Journal of Hydrology 254 (1-2): 48-58.
  14. Lunt, I.A., Hubbard, S.S. and Rubin, Y. 2005. Soil moisture content estimation using ground-penetratin radar reflection data. Journal of Hydrology, 307: 254–269.
  15. Michot, D.Y. Benderitter, A. Dorigny, B. Nicoullaud, D. King and Tabbagh, A. 2003. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resources Research, 39(5). Doi: 10.1029/2002wr001581.
  16. Minet, J., Bogaert, P. Vanclooster, M., and Lambot, S. 2012. Validation of ground penetrating radar full- waveform inversion for field scale soil moisture mapping. Journal of Hydrology, 424-425: 112-123.
  17. Pan, X., Zhang, J., Huang, P. and Roth, K. 2012.  Estimating field-scale soil water dynamics at a heterogeneous site using multi-channel GPR. Hydrology and Earth System Sciences. 9: 8027–8062.
  18. Saradjian, M.R. and Hosseini, M. 2011. Soil moisture estimation by using multi polarization SAR image.  Advances in Space Research, 48:278–286.
  19. Steelman, C.M. and Endres, A.L. 2012. Assessing vertical soil moisture dynamics using multi-frequency GPR common-midpoint soundings. Journal of Hydrology, 436–437:51–66.
  20. Topp, G.C. and Zebchuk W. 1979. The determination of soil–water desorption curves for soil cores. Can. Journal of Soil Science. 59:19–26.
  21. Van Dam, R. L., Van Den Berg, E. H., Schaap, M. G., Broekema, L. H. and Schlager, W. 2003. Radar reflections from sedimentary structures in the vadose zone. Geological Society, London, Special Publications, 211(1), 257-273.
  22. Weihermuller, L., Huisman, J.A., Lambot, S., Herbst, M. and Vereecken, H. 2007. Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques. Journal of Hydrology, 340: 205– 216.
  23. Wenner, F. A. 1916. Method of measuring earth resistivity; scientific paper, Report No. 258; National Bureau of Standards; Gaithersburg, MD, USA, 12:469-482.
  24. Wijewardana, Y.G.N.S. and Galagedara, L.W. 2010. Estimation of spatio-temporal variability of soil water content in agricultural fields with ground penetrating radar. Journal of Hydrology, 391: 24–33.
  25. Yan, M., Miao, L. and Cui, Y. 2012. Electrical resistivity features of compacted clay. Expansive Soils. Marine Georesources and Geotechnology, 30:167-179.