مدل‌سازی واکنش گوجه‌فرنگی (Solanum lycopersicum)به تنش‌های همزمان شوری آب و کمبود نیتروژن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی آب، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه عمران، واحد شهرقدس، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

شوری یکی از عوامل مهم تأثیرگذار بر رشـد و عملکرد بسیاری از گیاهان به شمار مـی‌آیـد. تحملگیاهانبهشوریبامیزاننیتروژندریافتیمتغیراست. دراینراستاپژوهشیباهدف مدل‌سازی پاسخ گیاه گوجه‌‌فرنگی به تنش‌های توأمان شوری و نیتروژن. به‌صورتگلدانیانجامشد. شش سطح شوری شامل 1،2، 4، 6، 8 و10 دسی­زیمنس بر متر و سه سطح کود نیتروژن شـامل صـفر،۵۰ و ۱۰۰ درصد نیاز کودی در سه تکرار اعمال شد. حداکثر عملکرد ماده خشک (8/25 گرم) در تیمار با شوری یک دسی‌زیمنس بر متر و کود مصرفی 100 درصد و حداقل عملکرد ماده خشک (8/5 گرم) در تیمار با شوری 10 دسی‌زیمنس بر متر و کود مصرفی صفر درصد به دست آمد. مدل‌های تعدیل یافته لیبیگ-اسـپرینگل (LS)و میچرلیخ-بال(MB) برای مدل‌سازی پاسخ گیاه به عناصر غذایی مورد ارزیابی قرار گرفتند. مقایسه آماره‌های ارزیابی مدل‌ها نشان داد که برای مدل‌سازی گیاه گوجه‌فرنگی در شرایط توأمان تنش شوری و کمبود نیتروژن، مدل تعدیل یافته MB(95/0d=) در مقایسه با مدل تعدیل یافته LS(88/0d=) برازش بهتری با داده‌های اندازه‌گیری شده داشت. بنابراین، استفاده از مدل تعدیل یافته (MB) برای برآورد عملکرد نسبی گوجه‌فرنگی توصیه می‌گردد. همچنین نتایج اثرات توأمان تنش‌های شوری و نیتروژن نشان می‌دهد که در یک سطح شوری با افزایش مقدار کود نیتروژن عملکرد ماده خشک گیاه افزایش یافته و با زیاد شدن شوری در یک سطح نیتروژن، عملکرد ماده خشک کاهش یافته است. آستانه کاهش عملکرد درشرایط شوری ثابت نبوده و بستگی به مقدار نیتروژن موجود در خاک دارد. در تیمار بدون مصرف نیتروژن، افزایش شوری تاثیر چندانی بر کاهش عملکرد نسبی نداشت. این امر نشان دهنده تاثیرگذار بودن عامل کمبود نیتروژن نسبت به شوری می‌باشد. بنابراین با مدیریت کود نیتروژن می‌توان،آستانه تحمل گیاه گوجه‌فرنگی به شوری را افزایش داد.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling Response of Tomato (Solanum lycopersicum) under Simultaneous Water Salinity and Nitrogen Deficiency Stresses

نویسندگان [English]

  • h a 1
  • h b 1
  • Hossain ebrahimi 2
1
2
چکیده [English]

Salinity is considered as one of the main problems affecting the growth and yield of many plants. Salinity tolerance varies with the amount of nitrogen uptake. The aim of the study was modeling the response of tomato (Solanum lycopersicum) under simultaneous salinity and nitrogen deficiency stresses. The indoor pot experiment was conducted in Damavand region, Iran, in 2015. The experiment was carried out on tomato plant in a factorial randomized complete block design with 3 replications. The treatments consisted of six levels of salinity (1, 2, 4, 6, 8 and 10 dS/m) and three levels of nitrogen including zero, 50 and 100 percent of the N-fertilizer needs. The maximum dry matter yield (25.8 gr) was obtained in the treatment with salinity of 1 dS/m and fertilizer consumption of 100%, while the minimum dry matter yield (5.8 gr) belonged to the treatment with salinity of 10 dS/m and no fertilizer application. Modified Liebig-Sprengel (LS) and Mitscherlich-Baule (MB) models were used to evaluate tomato response to nutrients. Comparison of statistics showed that for modeling tomato plants response to simultaneous salinity and nitrogen stresses, modified MB model (d=0.95)  fitted better to the measured data compared to modified LS model (d=0.88). Therefore, modified MB model was recommended to estimate relative yield of tomato. Also, results showed that, at a fixed salinity level, by increasing amount of nitrogen application, the yield of dry matter was increased, while yield of dry matter decreased with increasing salinity. Threshold of yield decline in saline conditions is not fixed and depends on the amount of nitrogen in the soil. Decline of relative yield with increase in salinity wasn’t significant in zero-nitrogen treatment, which showed the influence of nitrogen deficiency relative to salinity. Therefore, threshold of tomato yield decline could be increased by nitrogen fertilizer management.

کلیدواژه‌ها [English]

  • Salinity threshold
  • Liebig-Sprengel (LS) model
  • Mitscherlich-Baule (MB) model Transpirations
  1. اختری، ا.، م. همایی و ی. حسینی. ١٣٩٣. مدل‌سازی پاسخ گیاه به تنش‌های شوری و کمبود ازت خاک. نشریه حفاظت منابع آب و خـاک،جلد 4، شماره 3: 50-33
  2. جلالی، و. ر.، م. همایی و س. خ. میرنیا، ١٣٨٦. مدل‌سازی واکنش کلزا به شوری طی دوره رشد رویشی. نشریه تحقیقـات مهندسـی کشاورزی، جلد 8، شماره 4: 112-95
  3. حسینی، ی.، م. همایی، ن. ع. کریمیان و س. سعادت. ١٣٨٧. مدل‌سازی واکنش کلزا به تنش‌های توأمان شوری و کمبـود نیتـروژن.نشریه علوم و فنون کشاورزی و منابع طبیعی (علوم آب و خاک)،جلد 12،شماره46: 735-721
  4. حسینی، ی.، م. همایی، ن. ع. کریمیان و س. سعادت. ١٣٨٧. اثرات فسفر و شوری بر رشد، غلظت عناصر غذایی و کارایی مصـرف آب در کلزا.(Brassica napus L)  نشریه پژوهش کشاورزی، آب، خاک و گیاه در کشاورزی،جلد٨، شماره ٤:18-1
  5. خوشگفتار، ا م و ح. سیادت. 1383. تغذیه معدنی سبزیجات و محصولات باغی در شرایط شور. انتشارات معاونت باغبانی وزارت جهاد کشاورزی، 86 صفحه
  6. زاهدی فر، م.، ع. رونقی.، س. ع. ا. موسوی و ص. صفرزاده شیرازی. 1389. اثر شوری و نیتروژن بر توزیع عناصر غذایی، اسید سیتریک و ویتامین C در گوجه فرنگی. مجله علوم و فنون کشت‌های گلخانه‌ای. سال اول، جلد 3: 29-23.
  7. سالاردینی، ع. ا. و م. مجتهدی. ۱۳۸۴. نشریه حاصلخیزی خاک، انتشارات دانشگاه تهران، 434 صفحه
  8. سرایی تبریزی، م.،م . همایی.،ح .بابازاده.،ف .کاوه و م . پارسی نژاد . 1394. مدل‌سازی پاسخ ریحان به تنش توأمان شوری و کمبود نیتروژن. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، جلد 19، شماره 73: 57-45
  9. سرایی تبریزی، م 1393. مدل سازی جذب آب بوسیله گیاه در شرایط تنش‌های توآمان آب، شوری و نیتروژن. دانشگاه علوم و تحقیقات. تهران. پایان نامه دکترای تخصصی.132 صفحه.
  10. سیلسپور، م. و و ح.  ملاحسینی. 1384. تولید پایدار، ارتقای عملکرد و بهبود کیفیت با مدیریت مصرف بهینه کود در محصولات سبزی و صیفی. موسسه تحقیقات خاک و آب. نشریه فنی شماره 486. انتشارات سنا. 38صفحه
  11. ملکوتی، م. ج. و پ. کشاورز. ۱۳۸۴. نگرشی بر حاصلخیزی خاک‌های ایران. انتشارات سنا، تهران، 514 صفحه

 

  1. Black, C. A. 1993. Soil fertility evaluation and control. Lewis Publisher, Boca Raton, FL.
  2. Bressan, R. A., D. E. Nelson, N. M. Iraki, P. C. Larosa, N. K. Singh, P. M. Hasegawa and N. C. Carpita. 1990. Reduced cell expansion and changes in cell walls of plant cells adapted to NaCl. PP. 137-177. In: F. Katterman (ED.), Environmental Injury to Plant, Acadmic Press, New York.
  3. Flores, P., M. Carvajal, A. Cerda and V. Martinez. 2001. Salinity and ammonium/nitrate interactions on tomato plant development, nutrition and metabolites. J. Plant Nutr. 24: 1561-1573.
  4. Grattan, S. R. and C. M. Grieve. 1999. Salinity-mineral nutrient relations in horticultural crops. Sci. Hortic. 78: 127- 157.
  5. Gunes, A., A. Inal and M. Alpaslan. 1996. Effect of salinity on stomatal resistance, praline and mineral composition of pepper. Plant Nutr. 19: 389-396.
  6. Homaee, M., R.A. Feddes and C. Dirksen. 2002. A macroscopic water extraction mode for nonuniform transient salinity and water stress. Soil Sci. Soc. Am. J. 66(6): 1764-1772.
  7. Homaee, M., R.A. Feddes., and C. Dirksen. 2002c. Simulation of root water uptake. Nonuniform transient combined salinity and water stress. Agric. Water Manage. 57(2): 127-144
  8. Lips, S. H., E. O. Leidi and M. Silberbush. 1990. Nitrogen assimilation of plant under stress and high concentrations. PP. 207-215. In: W. R. Ulrich, C. Rigano, A. Fuggi and P. J. Aparicio (Eds.), Inorganic Nnitrogen in Plants and Microorganisms, Uptake and Metabolism, Springer-Verlag, Berlin.
  9. Loague, K., and R.E. Green. 1991. Statistical and graphical methods for evaluating solute transport models: overview and application. J. of Contaminant Hydrology 7: 51-73.
  10. Navarro, J. M., V. Martinez and M. Carvajal. 2000. Ammonium, bicarbonate and calcium effects on tomato plants grown under saline conditions. Plant Sci. 157: 89-96.
  11. Petersen, K. k., J. Willumsen and K. Kach. 1998. Composition and taste of tomato as affected by increased salinity and different salinity sources. J. Hort. Sci. Biotechnol. 73: 205-215.
  12. Ravikovitch, S. and A. Porath. 1967. The effect of nutrients on the salt tolerance of crops. Plant Soil 26: 49-71.
  13. Ravikovitch, S. and D. Yoles. 1971. The influence of phosphorus and nitrogen on millet and clover growing in soils affected by salinity: I. Plant development. Plant Soil. 35: 555-567.
  14. Shenker, M., A. Ben-Gal., and U. Shani. 2003. Sweet corn response to combined nitrogen and salinity environmental stresses. Plant Soil 256: 139-147
  15. Shen, D., Q. Shen, Y. Liang and Y. Liu. 1994. Effect of nitrogen on the growth and photosynthetic activity of salt - stressed barley. J. Plant Nutr. 17: 787-799.
  16. Skaggs, H.T., M.Th Van Genuchten., P.J. Shouse. and J.A Poss. 2006. Macroscopic approaches to root water uptake as a function of water and salinity stress. Agricultural Water Management, 86 (1-2): 140- 149.