تلفات نیترات در اراضی شالیزاری زهکشی شده دوکشتی برنج و کلزا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد آبیاری و زهکشی، دانشگاه علوم کشاورزی و منابع طبیعی ساری.

2 دانشیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی ساری.

3 دانشجوی دکتری آبیاری و زهکشی، دانشگاه علوم کشاورزی و منابع طبیعی ساری.

چکیده

با نصب زهکشی زیرزمینی در اراضی شالیزاری، امکان کشت زمستانه و مدیریت آب در فصل کشت برنج فراهم می­شود. با توجه به شرایط متفاوت کشت و عملیات کشاورزی، اتخاذ تدابیر مناسب برای کاهش هدر رفت عناصر غذایی از اراضی شالیزاری دارای زهکشی زیرزمینی، ضمن افزایش بهره­وری مصرف این مواد، منجر به کاهش آلودگی منابع آب پذیرنده نیز خواهد شد. برای بررسی اثرات زهکشی زیرزمینی بر غلظت نیترات خروجی و نیترات موجود در لایه­های مختلف، تحقیقی از خرداد 1394 تا اردیبهشت 1395 (طی یک فصل کشت برنج و یک فصل کشت کلزا) در اراضی شالیزاری دانشگاه علوم کشاورزی و منابع طبیعی ساری انجام شد. تیمارهای مختلف زهکشی زیرزمینی، سه نوع سیستم زهکشی زیرزمینی معمولی شامل سیستم زهکشی با فاصله 30 متر و عمق نصب 9/0 متر، سیستم زهکشی با فاصله 30 متر و عمق نصب 65/0 متر، سیستم زهکشی با فاصله 15 متر و عمق نصب 65/0 متر؛ و یک سیستم زهکشی دو عمقی (سیستم زهکشی با فاصله 15 و اعماق نصب 65/0 و 9/0 متر به­صورت یک در میان) بودند. از زه­آب زهکش­های این تیمارها و همچنین از آب پیزومترها در اعماق 4/0، 9/0، 2 و5 متر برای تعیین میزان نیترات، نمونه­هایی تهیه شد.نتایج نشان داد که غلظت و میزان کل نیترات خروجی در فصل کشت برنج به­ترتیب 33% تا 80% و 91% تا 99% کمتر از فصل کشت کلزا بود. همچنین، غلظت نیترات زه­آب زهکش­های با عمق 9/0 متر بیشتر از مقدار آن در زه­آب زهکش­های با عمق 65/0 متر بود. از طرف دیگر، نیترات موجود در آب برای تمامی تیمارها، در لایه­های بالایی خاک، بین 1 تا 3/18 میلی­گرم بر لیتر بیشتر از نیترات در لایه­های پایین­تر بود. به­طور کلی در هر دو فصل کشت برنج و کلزا، تیمار زهکشی با فاصله بیشتر و عمق کم، نیترات کمتری را آبشویی کرده­اند.

کلیدواژه‌ها


عنوان مقاله [English]

Nitrate Losses in Drained Paddy Fields during Rice and Canola Growing Seasons

نویسندگان [English]

  • s d 1
  • Ali Shahnazari 2
  • Mehdi Jafari talukolaee 3
چکیده [English]

Subsurface drainage is a prerequisite to growing winter crops and improving water management in rice season in the consolidated paddy fields in Northern Iran. Based on different cultivation condition, to decrease nutrient loss from subsurface drainage in these fields, adopting suitable strategies will decrease the pollution of water resources. A research was conducted in pilot farm of Sari Agricultural Sciences and Natural Resources University from May 2015 to April 2016 (during two successive rice-canola growing seasons) to evaluate the effect of subsurface drainage systems on nitrate loss and nitrate concentration in different soil depths. The subsurface drainage treatments were three existing subsurface drainage systems with mineral envelopes, including systems with 30-m spacing and 0.9 m depth, a drainage system with 30-m spacing and 0.65 m depth, a drainage system with 15-m spacing and 0.65 m depth, and a bi-level subsurface drainage system with drain spacing of 15 m and drain depths of 0.65 and 0.9 m as alternate depths (bi-level). The nitrate concentration was monitored in drainage water and at depths of 0.4, 0.9, 2 and 5 m during the study period. The results showed that the nitrate concentration and the total nitrate loss during rice growing season was 33-80% and 91-99 %, respectively, less than that in canola growing season. Also, the nitrate concentration in drainage water for drains with 0.9 m depth was more than that in drains with 0.65 m depth. On the other hand, nitrate concentration in surface depth was higher than lower depths in all treatments. Overall, in both seasons, drainage system with wider spacing and shallower depth drained out less nitrate than the other systems.

کلیدواژه‌ها [English]

  • Drain depth
  • Drain discharge
  • Drain spacing
  • Piezometer
  • soil depth
1. آذری، الف. و ع. لیاقت. 1381. زهکشی؛ کمیت و کیفیت جریان برگشتی. کمیته ملی آبیاری و زهکشی ایران، چاپ اول.
2. ابیانه، ا.، ح. نوری، ع. لیاقت، و. کرمی، و ح. نوری. 1389. واسنجی آبشویی و نوسانات سطح ایستابی در اراضی شالیزار با استفاده از مدلDRAINMOD-N. مجله علوم کشاورزی و منابع طبیعی، 49: 60-57.
3. احمدیان، ا. و م. حیدرپور. 1390. بررسی عملکرد پوشال جو در کاهش نیترات زهکش‌های زیرزمینی تحت شرایط جریان ناپایدار. یازدهمین سمینار آبیاری و کاهش تبخیر، دانشگاه شهید باهنر کرمان.
4. بخت‌فیروز، ع. 1390. بررسی اثر سامانه‌های زهکشی بر گسیل گاز متان و دی‌اکسید کربن از شالیزارها. پایان‌نامه کارشناسی‌ارشد دانشگاه علوم کشاورزی و منابع طبیعی ساری. 50 ص.
5. درزی، ع.، س.م. میرلطیفی، ع. شاهنظری، ف. اجلالی، م.ح. مهدیان. 1391. تاثیر زهکشی سطحی و زیرزمینی بر عملکردو اجزای عملکرد برنج در اراضی شالیزاری. مجله پژوهش های آب در کشاورزی، ج (1)26: 70-61.
6. جعفری تلوکلایی، م.، ع. شاهنظری، و م. ضیاتبار احمدی. 1392. بررسی اثر دو نوع پوشش زهکشی بر دبی زهکش‌های زیرزمینی در مزارع شالیزاری استان مازندران. نشریه آب و خاک، 27(1): 130-123.
7. ملکوتی، م. و م. نفیسی.1373. حاصلخیزی خاک‌های مناطق خشک. انتشارات دانشگاه تربیت مدرس. 494 ص.
8. نجفی، غ. 1387. نقش مدیریت منابع آب در حوزه آبریز رودخانه هراز. پایان‌نامه کارشناسی ارشد رشته مهندسی آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی ساری، 186 صفحه.

9. Baker, J.L. 1980. Agricultural areas as nonpoint sources of pollution. p. 275-310. In Environmental impact of nonpoint source pollution. Overcash M.R. and Davidson J.M. (ed.) Ann Arbor Science Publication, Inc., Ann Arbor, MI.
10. Breve, M.A., R.W. Skaggs, J.A. Parsons, and J.W. Gilliam. 1998. Using the DRAINMOD-N model to study effects of drainage system design and management on crop productivity, profitability and NO3-N losses in drainage water. Agricultural water management, 35:227-243.
11. Burchell, M.R. 2003. Practices to reduce nitrate-nitrogen losses from drained agricultural lands. PhD diss. Raleigh, N.C., North Carolina State University.
12. Cho J.Y., Han K.W., Choi J.K., Kim Y.J. and Yoon K.S. 2002. N and P losses from a paddy field plot in Central Korea. Soil Sci. Plant Nutrition. 48:301–306.
13. Cooke R., Nehmelman J. and Kalita P. 2002. Effect of tile depth on nitrate transport from tile drainage systems. ASAE Paper No. 022017.
14. Darzi-Naftchali, A., S.M. Mirlatifi, A. Shahnazari, F. Ejlali, and M.H. Mahdian. 2013. Effect of subsurface drainage on water balance and water table in poorly drained paddy fields. Agricultural water management, 130:61-68.
15. FAO. 2014. FAO Statistical Year Book. Food and Agriculture Organization of the United Nations, Bangkok, 195 p.
16. Fogiel, A., and H.W. Belcher. 1991. Review of water table management impacts on water quality. Rep Land Improve. Contract. Am. Agric. Eng. Dept., Michigan State University, East Lansing, MI.
17. Gilliam, J.W., Baker J.L. and Reddy K.R. 1999. Water quality effects of drainage in humid regions. In Agricultural Drainage, 801-830. Agronomy Monograph 38. R.W. Skaggs and J. van Schilfgaarde, eds. Madison, Wisc. ASA, CSSA, and SSSA.
18. Guo, H.Y., Wang X.R., Wu Z.H. and Zhang Z. 2004. Case study on nitrogen and phosphorus emissions from paddy field in Taihu region. Environmental Geochemistry and Health, (26): 209-219.
19. Jackson W.A., Asmussen L.E., Hauser E.W. and White A.W. 1973. Nitrate in surface and subsurface flow a small agricultural watershed. Journal of Environmental Quality, 2(4): 480-482.
20. Jafari-Talukolaee M., Shahnazari A., Z. Ahmadi M. and Darzi-Naftchali A. 2015. Drain Discharge and Salt Load in Response to Subsurface Drain Depth and Spacing in Paddy Fields. Journal of Irrigation and Drainage Engineering. 141(11): 1-6.
21. Jafari-Talukolaee M., Ritzema H., Darzi-Naftchali A. and Shahnazari A. 2016. Subsurface Drainage to Enable the Cultivation of Winter Crops in Consolidated Paddy Fields in Northern Iran. Sustainability, 8 (249): 1-19.
22. Kalita, P.K., Algoazany A.S., Mitchell J.K., Cooke R.A.C. and Hirschi M.C. 2006. Subsurface water quality from a flat tile-drained watershed in Illinois, USA. Agriculture, Ecosystems and Environment, 115: 83–193.
23. Kladivko, E.J., Frankenberger J.R., Jenkins B.J. and Fausey N.R. 2004. Nitrate losses to subsurface drains as affected by winter cover crop, fertilizer N rates, and drain spacing. ASAE Paper No. 701P0304.
24. Rabiee, M., Karimi M.M. and Safa F. 2004. Effect of planting dates on grain yield and agronomic characteristics of rapeseed cultivars as a second crop after rice at Kouchesfahan. Iranian J. Agric. Sci. 35(1):177-187. (In Persian).
25. Shamrukh, M.M. and Coropciogles Y. 2001. Modeling the effect of chemical fertilizers on ground water quality in the Nile valley aquifer, Egypt, Ground water, 39(1), pp59-67.
26. Shin D.S. and Kwun S.K. 1990. Input/output of nitrogen and phosphorus in a paddy field. Korean J. Environ. Agric., 9: 133-141.
27. Singh M., Pabbi S., Bhattacharya A.K. and Singh A.K. 2007. Nitrite accumulation in coastal clay soil of India under inadequate subsurface drainage Agricultural Water Management (91): 78-85.
28. Skaggs, R.W. and Chescheir G.M. 2003. Effects of subsurface drain depth on nitrogen losses from drained lands. Trans. ASAE, 46(2): 237-244.
29. Tabuchi T., Takamura S., Kubota H. and Suzuki S. 1975. The water quality and load of rivers during manuring period. Trans JSIDRE, 58:8–13.
30. Yoon, K.S., Choi J.K., Son J.G. and Cho J.Y. 2006. Concentration profile of nitrogen and phosphorus in leachate of a paddy plot during the rice cultivation period in southern Korea. Communications in Soil Science and Plant Analysis, 37: 1957–1972.