اثر آبیاری با آب مغناطیسی بر عملکرد دانه و بیوماس گیاه سویا رقم DPX در شرایط کم‌آبیاری و شوری آب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار پژوهش مرکز تحقیقات، آموزش کشاورزی و منابع طبیعی همدان-سازمان تحقیقات، آموزش و ترویج کشاورزی

2 استادیار گروه مهندسی آب، دانشگاه کشاورزی و منابع طبیعی ساری.

3 دانشجوی دکتری آبیاری و زهکشی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

4 دانشیار گروه مهندسی آب، دانشگاه بوعلی سینا همدان

چکیده

افزایش بهره­وری آب، عامل کلیدی برای رفع بزرگ­ترین چالش بخش کشاورزی در مناطق کم آب است. به­منظور بررسی تاثیر سطوح مختلف آب آبیاری و شوری با استفاده از آب مغناطیسی و غیرمغناطیسی بر خصوصیات عملکرد، بیوماس، ارتفاع گیاه، درصد روغن و درصد پروتئین سویا رقم DPX، آزمایشی به­صورت فاکتوریل در قالب بلوک­های کامل تصادفی با سه تکرار در سال 1392 در یک مزرعه کشاورزی واقع در شهرستان علی­آباد استان گلستان اجرا شد. تیمارها شامل سه سطح 100 درصد، 75 درصد و 50 درصد آب مورد نیاز گیاه سویا و سه سطح شوری 7/0، 5 و 10 دسی­زیمنس بر متر بودند. نتایج نشان داد که با مغناطیسی کردن آب آبیاری مقدار عملکرد، بیوماس، ارتفاع گیاه، درصد روغن و درصد پروتئین در تمامی تیمارهای خشکی و شوری، به­طور معنی­داری افزایش یافت (001/0p <). متوسط مقدار کاهش عملکرد در تیمار شوری آب پنج دسی­زیمنس بر متر برابر 44/8 درصد و در تیمار شوری آب 10 دسی­زیمنس بر متر برابر 68/24 درصد نسبت به تیمار شاهد بود. همچنین متوسط مقدار کاهش عملکرد در سطح 75 درصد آبیاری برابر 68/30 درصد و در سطح 50 درصد آبیاری برابر 40/44 درصد نسبت به تیمار شاهد بود. در مجموع، بالاترین میزان عملکرد دانه برابر 5/5 تن در هکتار از تیمار 100 درصد نیاز آبی مربوط به تیمار آب مغناطیسی بود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Irrigation with Magnetized Water on the Yield and Biomass of Soybean var. DPX under Water Deficit and Salinity Stress

نویسندگان [English]

  • a gh 1
  • m kh 2
  • p sh 3
  • h z 4
چکیده [English]

In areas facing water shortage, increasing water productivity is the key to overcome the greatest challenge in the agricultural sector. The present field experiment aimed to evaluate the effect of different irrigation water depths and salinity of magnetized and non-magnetized water on grain yield, biomass, height, protein, and oil content of soybean variety DPX. The experiment was performed as factorial based on randomized complete block design with three replications in Aliabad, Golestan province, in 2013. The treatments consisted of three levels of water volume (100%, 75% and 50% of soybean water requirement) and three salinity levels (0.7, 5, and 10 dS/m). The results showed that magnetized water caused irrigation water quality to be improved. Therefore, magnetization of irrigation water resulted in the highly significant increase in the grain yield, biomass, height, protein, and oil content of plant under water deficit and salinity stress treatments (p < 0.001). The average decrease of yield in water salinity of 5 dS/m was equal to 8.44 percent, and for water salinity of 10 dS/m was equal to 24.68 percent as compared to the control treatment. Furthermore, the average decrease of yield in 75% irrigation level was equal to 30.68 percent, and for 50% irrigation level was equal to 44.40 percent as compared to the control treatment. In general, the highest grain yield was 5.5 tons per hectare for plants treated with magnetized water and provision of 100% crop water requirement.

کلیدواژه‌ها [English]

  • Magnetic field
  • Water management
  • Furrow irrigation
  1. 1.             بینای مطلق، پ. 1389. دستورالعمل و روش­های اندازه­گیری عوامل فیزیکو شیمیایی و مواد شیمیایی معدنی سمی در آب آشامیدنی. وزارت بهداشت درمان و آموزش پزشکی. 73 صفحه.

    2.             خواجویی­نژاد، غ. ر.، کاظمی، ح.، آلیاری، ه.، جوانشیر، ع. و آروین، م. ج. 1384. تاثیر رژیم‌های آبیاری و تراکم کاشت بر عملکرد، کارآیی مصرف آب و کیفیت دانه سه رقم سویا درکشت تابستانه در شرایط آب و هوایی کرمان. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک. جلد 9، شماره 4، ص 151-137.

    3.             شاهمرادی، ش.، زینالی، ح.، دانشیان، ج. و احمدی، ع. 1382. بررسی اثرات تنش خشکی روی صفات کمی و کیفی ارقام و لاین­های پیشرفته سویا. پایان­نامه کارشناسی ارشد دانشکده کشاورزی، دانشگاه تهران.

    1. صادقی، ح. 1389. طراحی، ساخت و ارزیابی دستگاه تهیه آب مغناطیسی برای مصارف کشاورزی. پایان­نامه کارشناسی ارشد، دانشکده مهندسی بیوسیستم کشاورزی، دانشگاه تهران، 120 صفحه.
    2. قدرتی، غ. ر.، خدابنده، ا.، برزگری، م.، کلانتر احمد، ا. و دباغ، غ. 1392. سالند، رقم جدید سویا برای کاشت در مناطق شمال استان خوزستان. مجله به نژادی نهال و بذر. جلد 29، شماره 1، ص 212-209.
    3. کیانی، ع. ر. 1386. آب مغناطیسی پدیده­ای نو در ارتقاء بهره­وری آب. ماهنامه علمی تخصصی کشاورزی زیتون، جلد 183، ص: 9-1.
    4. کیانی، ع. ر. 1387. کارایی مصرف آب و عملکرد ارقام مختلف سویا تحت آبیاری بارانی، سازمان ترویج، آموزش و تحقیقات کشاورزی، ٦7 صفحه.
    5. نوروزی، م.، ماهرانی، م. و مسچی، م. 1378. استفاده از آب­های شور و لب شور برای آبیاری. گروه کار سیستم آبیاری در مزرعه، کمیته ملی آبیاری و زهکشی ایران، 65 صفحه.
    6. نیریزی، س. 1378. مدیریت کاربرد آب­های شور و لب شور در کشاورزی پایدار، کارگاه آموزشی مدیریت استفاده از آب­های شور، کمیته ملی آبیاری و زهکشی ایران، 17 صفحه.
      1. Amaya, J. M., Carbonell, M. V., Martinez, E. and Raya, A. 1996. Effects of stationary magnetic fields on germination and growth of seeds. Horticulture Abstract, 68: 1363.
      2. Belyavskaya, N. A. 2004. Biological effects due to weak magnetic field on plants. Advances in Space Research, 34: 1566-1574.
      3. Castro Palacio, J. C., Morejon, L. P., Velazquez Abud, L. and Govea, A. P. 2007. Stimulation of Pinus tropicalis M. seeds by magnetically treated water. International Agrophysics, 21: 173-177.
      4. Chibowski, E., Szcześ, A. and Hołysz, L. 2005. Influence of Sodium Dodecyl Sulfate and Static Magnetic Field on the Properties of Freshly Precipitated Calcium Carbonate. ACS Public, 21: 8114-8122.
      5. Duart Diaz, C. E., Riquenes, J. A., Sotolongo, B., Portuondo, M. A., Quintana, E. Q. and Perez, R. 1997. Effects of magnetic treatment of irrigation water on the tomato crop. Horticulture Abstract, 69: 469-494.
      6. Fischer, G., Tausz, M., Kock, M. and Grill, D. 2004. Effects of weak 16 Hz magnetic fields on growth parameters of young sunflower and wheat seedlings. Bioelectro magnetic, 25: 638-641.
      7. Florez, M., Carbonell, M. V. and Martines, E. 2005. Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth. Environmental and Experimental Botany, 6: 1-13.
      8. Jacob, B. 1999. Magnetic treatment of irrigation water: Experimental results and application conditions. Environmental Science and Technology, 33: 1280-1285.
      9. Jones, J. 2001. Laboratory Guide for Conducting Soil Tests and Plant Analysis. CRC Press, LLC. USA. Sparks et al. (ed). Methods of Soil Analysis. Part 3, Chemical Methods. Soil Sci. Soc. Am. Book Ser. 5. Madison, WI, USA.
      10. Kavi, P. S. 1977. The effect of magnetic treatment of soybean seed on its moisture absorbing capacity. Science and Culture, 43: 405-406.
      11. Kemin, L. M., Guodong, M. Guofeng , Wencheng, L. W. Lihong, L. Y. Ping and Yanna, L. 2007. Effects of soybean isoflavone dosage and exercise on the serum. Asia Pacific Journal of Clinical Nutrition, 16: 193-195.
      12. Kenya, A. D. and Parsons, S. A. 2005. A spectrophotometer- based study of magnetic water: Assessment of ionic vs. surface mechanisms. Water Research, 40: 517-524.
      13. Kiatgamjorn, P., Khan-ngren, W. and Nitta, S. 2002. The effect of electric field on bean sprouts growing. ICEMC, 1-4.
      14. Kordas, L. 2002. The effect of magnetic field on growth, development and the yield of spring wheat. Polish Journal of Environmental Studies, 11(5): 527-530.
      15. Leather Wood, W. R. 2005. Influence of salt stress on germination, root elongation and carbohydrate content of five salt tolerant and sensitive taxa. MSc. Thesis, Department of Horticultural Science, North Carolina State University.
      16. Lin, I. J. and Yotvat, J. 1990. Exposure of irrigation and drinking water to a magnetic field with controlled power and direction. Journal of Magnetism and Magnetic Materials, 83: 525-526.
      17. Maheshwari, B. L. and Grewal, H. S. 2009. Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity. Agricultural Water Management, 96: 1229-1236.
      18. Majd, A. and Shabrangi, A. 2009. Effect of seed pretreatment by magnetic fields on seed germination and ontogeny growth of agricultural plants. Progress in Electro magnetic Research Symposium, Beijing, China, March 23-27.
      19. Martinez, E., Carbonell, M. V. and Florez, M. 2002. Magnetic stimulation of initial growth stages of wheat (Triticum aestivum L.), Electromagnetic Biology and Medicine, 21: 43-53.
      20. Mohamed, A. I. 2013. Effects of magnetized low quality water on some soil properties and plant growth. International Journal of Research in Chemical Environment, 3(2): 140-147.
      21. Nashir, S. H. 2008. The effect of magnetic water on growth of chickpea. Engineering and Technology, 26(9): 16-20.
      22. Pang, X. and Deng, B. 2008. Investigation of changes in properties of water under the action of a magnetic field. Chinese Science Journal, 51(11): 1621-1632.
      23. Podleoeny, J., Pietruszewski, S. and Podleoena, A. 2004. Efficiency of the magnetic treatment of broad bean seeds cultivated under experimental plot conditions. International Agro physics, 18: 65-71.
      24. Ruzic, R. and Jerman, I. 2002. Weak magnetic field decreases heat stress in cress seedlings. Electromagnetic Biology and Medicine, 21: 69–80.
      25. Saliha, B. B. 2005. Bioefficacy testing of GMX online magnetic water conditioner in grapes var. Muscat. Tamil Nadu Agricultural University. Project completion project.
      26. Yinan, Y., Yuan, L., Yongqing, Y. and Chunyang, L. 2005. Effect of seed pretreatment by magnetic field on the sensitivity of cucumber (Cucumis sativus) seedlings to ultraviolet-B radiation, Environmental Experimental Botany, 54: 286–294.