Investigation the Growth Characteristics of Some Pomegranate Genotypes Grafted on Selected Rootstocks in Saline Conditions

Document Type : Research Paper

Authors

1 Assistant Professor, National Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran

2 Associate Professor, National Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran

3 Associate Professor, Research Division of Natural Resources, Yazd Agricultural and Natural Resource Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran

Abstract

To evaluate the growth characteristics of some pomegranate (Punica granatum) genotypes on selected rootstocks under saline conditions, a factorial experiment was carried out based on randomized complete block design, at the Chah Afzal Station of the National Salinity Research Center of Iran, in 2017-2022. The factors included rootstocks at four levels (1- Chah Afzal (CA), 2- Vahshi Babolsar (VB), 3- Narak Lasjerd Semnan (NL), and 4- Poost Siyah Ardakan, PS) and scions at three levels (1- Malas Yazdi (MY), 2- Rabab Niriz (RN) and 3- Chah Afzal). This research was done on sixty 4-year-old trees, with 240 observations (4 branches on each tree) with irrigation water salinity of 9±0.5 dS/m. The results showed that type of rootstock affected on the graft success percentage and the salinity tolerance of the grafted genotypes. The highest and lowest graft success percentages was observed in MY cultivar grafted on CA rootstock (96.77%) and CA genotype grafted on PS Ardakan rootstock (20.77%), respectively. The maximum height and diameter of the scions were observed in MY cultivar grafted on VB rootstock (131 cm and 16 mm, respectively). The highest relative water content was observed in RN cultivar grafted on CA (80.09%). This grafted compound had the lowest relative ions leakage (60%). The highest potassium content was observed in the leaves of CA genotype grafted on VB (1.4%) was RN grafted on VB (1.3%). Also, the lowest sodium content in each three grafted genotypes was observed on VB. In general, the genotypes grafted on VB and CA showed more tolerance to salinity. Genotypes grafted on PS Ardakan had not sufficient tolerance in saline conditions, so, the grafted combinations of RN/PS Ardakan and CA/PS Ardakan dried completely in the second year (2022). Overall, the grafted combinations of RN/V B and MY/VB were recognized as superior, followed by combinations of CA/ VB, MY/CA and RN/CA.

Keywords


  1. حیدری شریف‌آباد، حسین، 1380. گیاه و شوری. موسسه تحقیقات جنگل­ها و مراتع، 76 صفحه.
  2. رحیمیان، محمد حسن،. غلامی، حسن، رنجبر، غلام حسن، بیرامی، حسین، مروج الاحکامی، بیتا، کریمی، محسن، و چراغی، علی، 1400. برهمکنش حجم آب مصرفی و شوری آب آبیاری بر عملکرد گندم در مناطق خشک (مطالعه موردی: یزد). آب و توسعه پایدر. 8 (4)، صص 43-50.

DOI: 10.22067/jwsd.v8i4.2106.1053

  1. مومن پور، علی، بخشی، داود، ایمانی، علی، رضایی، حامد،  a اثر تنش شوری بر غلظت عناصر غذایی در رقم های بادام ’شکوفه‘، ’سهند‘ و ژنوتیپ’۴۰-۱۳‘ پیوند شده روی پایه GF677. مجله علوم باغبانی مشهد، 29 (2)، صص 255-268. https://doi.org/10.22067/jhorts4.v0i0.33416
  2. مومن پور، علی، بخشی، داود، ایمانی، علی، رضایی، حامد،  a  اثر تنش شوری بر خصوصیات رشدی و غلظت عناصر غذایی در رقم‌های بادام ’شاهرود 12‘، ’تونو‘ و ژنوتیپ’16-1‘ پیوند شده روی پایه  GF677. مجله به­زراعی کشاورزی ابوریحان 17 (1)، صص 216-197. DOI: 10.22069/jopp.2019.14325.2283
  3. مومن پور، علی، بخشی، داود، ایمانی، علی، رضایی، حامد،  b اثر تنش شوری بر خصوصیات مورفولوژیک و فیزیولوژیک در برخی از ژنوتیپ‌های انتخابی بادام پیوند شده روی پایه. مجله فنآوری تولیدات گیاهی. 7 (2)، صص 152-137.
  4. مومن پور، علی، سلطانی گرد فرامرزی، ولی، راد، محمد هادی، وظیفه شناس، محمد رضا، آناقلی، امین، احمدی، فاطمه، جماعتی اردکانی، زهرا، 1399. تعیین آستانه تحمل شوری ژنوتیپ های مختلف انار. پژوهش های آب در علوم کشاورزی 34 (1)، صص 1-14.DOI:22092/jwra.2020.121904
  5. Arnon, D.I., 1949. Copper enzymes in isolated chloroplast polyphenoloxidase in Beta vulgaris. Plant Physiology. 24, Pp. 1- 15.
  6. Bolat, I., Kaya, C., Almaca, A. and Timucin, S., 2006. Calcium sulfate improve salinity tolerance in rootstock of plum. Journal of Plant Nutrition, 29, Pp. 553-564. DOI:1080/01904160500526717
  7. El-Agamy, S. Z., Mostafa, R. A., Shaaban, M. M. and El-Mahdy, M. T., 2010. In vitro salt and drought tolerance of Manfalouty and Nab El-Gamal pomegranate cultivars. Aust J Basic Appl Sci. 4 (6), Pp 1076- 1082.
  8. Emami, A., 1996. Methods of plant analysis. Agricultural Research and Education Organization. Soil and Water Institute. 130 Pp.
  9. Fipps, G., 2003. Irrigation water quality standards and salinity management strategies. Texas Agricultural Extension Service. Pp 1-18.
  10. Fisarakis, I., Nikolaou, N., Tsikalas, P., Therios, I. and Stavrakas, D., 2004. Effect of salinity and rootstock on concentration of potassium, calcium, magnesium, phosphorus, and nitrate-nitrogen in Thompson seedless grapevine. Journal of Plant Nutrition, 12, Pp. 2117-2134. DOI:1081/PLN-200034662
  11. Grattan, S. R. and Grieve, C. M. ,1999. Salinity mineral nutrient relations in horticultural crop. Science Horticulture. 78, Pp. 127- 157.
  12. Guo, F.O. and Tang, Z.C., 1999. Reduced Na+ and K+ permeability of K+ channel in plasma membrane isolated from roots of salt tolerant mutant of wheat. Chinese Academy of Sciences. 41 (9), Pp. 217-220. DOI:10.1023/B:TICU.0000025666.84313.
  13. Karimi, H. R. and Farahm, H., 2011. Study of pomegranate (Punica granatum) propagation using bench grafting. Journal of Fruit and Ornamental Plant Research, 19, Pp. 67-72.
  14. Karimi, H.R. and Hasanpour, Z. 2014. Effects of salinity and water stress on growth and macro nutrients concentration of pomegranate (Punica granatum ). Journal of Plant Nutrition. 37, Pp. 1937-1951. DOI:10.1080/01904167.2014.920363
  15. Lutts, S., Kinet, J.M. and Bouharmont, J. 1995. Changes in plant response to NaCl during development of rice (Oryza sativa ) varieties differing in salinity resistance. Journal of Experimental Botany. 46, Pp. 1843–1852. https://doi.org/10.1093/jxb/46.12.1843
  16. Maas, E.V. and Hoffman, G.J. 1977. Crop salt tolerance: Current assessment. Journal of Irrigation and Drainage Engineering. 103, Pp.115- 134.
  17. Mahajan, Sh. and Tuteja, N., 2005. Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics. 444, Pp.139-158. doi: 10.1016/j.abb.2005.10.018.
  18. Mirjalili, S. A., 2016. Pomegranate: biodiversity and genetic resources, a review. Rostaniha. 17 (1), Pp. 1- 18. DOI: http://dx.doi.org/10.22092/botany.2016.106999
  19. Momenpour, A. and Imani, A., 2018. Evaluation of salinity tolerance in fourteen selected pistachio (Pistacia vera ) cultivars. Advances in Horticultural Science. 32 (2), Pp. 249-264. DOI:10.13128/ahs-22261
  20. Momenpour, A., Dehestani Ardakani, M., Shirmardi, M., Gholamnezhad, J., Ahmadi, F. and Jamaati, Z., 2022. Salinity tolerance evaluation of twelve selected pomegranate (Punica granatum) genotypes to achieve tolerant cultivars and rootstocks. Journal of Horticultural and Postharvest Resarch. 5 (4), Pp. 363-378.

 https://doi.org/10.22077/jhpr.2022.5152.1270

  1. Momenpour, A., Imani, A., Bakhshi, D. and Akbarpour, E., 2018. Evaluation of salinity tolerance of some selected almond genotypes budded on GF677 International Journal of Fruit Science. 18 (4), Pp. 410-435. DOI:10.1080/15538362.2018.1468850
  2. Munns, R., 2002. Comparative physiology of salt and water stress. Plant, Cell and Environment. 25, Pp. 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  3. Munns, R. and M. Tester., 2008 Mechanisms of salinity tolerance. Annual Review of Plant Biology. 59, Pp. 651–681. DOI:1146/annurev.arplant.59.032607.092911
  4. Okhovatian-Ardakani, A.R., Mehrabanian, M., Dehghani, F. and Akbarzadeh, A., 2010. Salt tolerance evaluation and relative comparison in cuttings of different pomegranate cultivars. Plant, Soil and Environment. 56 (4), Pp. 176-185. DOI: 10.17221/158/2009-PSE
  5. Rivero, M., Ruize, M. and Romero, L., 2003. Role of grafting in horticulture plants under stress conditions. Journa of Agricultural Environmental, 1, Pp.70-74.
  6. Shani, U. and Ben-Gal, A. 2005. Long-term response of grape vines to salinity: osmotic effects and ion toxicity. American Journal of Enology and Viticulture, 30 (56), Pp. 2- 20. DOI:5344/ajev.2005.56.2.148
  7. Szczerba, M.W., Britto, DT., Balkos, KD. and Kronzucker, H.J., 2008. NH4+ stimulated and -inhibited components of K+ transport in rice (Oryza sativa ). Experimental Botany. 59, Pp. 3415–3423. https://doi.org/10.1093/jxb/eraa150
  8. Szczerba, M.W., D. T. Britto. and H. J. Kronzucker., 2009. K+ transport in plants: Physiology and molecular biology. Plant Physiology. 166, Pp. 447-466. doi: 10.1016/j.jplph.2008.12.009.
  9. Vazifeshenas, M., Khayyat, M. and Jamalian, S., 2009. Effect of different scion rootstocks combinations on Vigor tree size, and yield and fruit quality on three Iranian cultivars of pomegranate. Acta Horticulture, 463, Pp.143-152. DOI:1051/fruits/2009030
  10. Yamasaki, S. and Dillenburg, L.C., 1999. Measurements of leaf relative water content in Araucaria angustifolia. Revista. Pp 21-30.