Optimal Cropping Pattern and Management of Ground and Surface Water Resources of Kohpayeh-Segzi Plain Using the Integrated Model of Game Theory and Optimization Algorithm

Document Type : Research Paper

Authors

1 PhD student, Water science and Engineering Department, Bu-Ali Sina University

2 Associate Professor, Water science and Engineering Department, Bu-Ali Sina University

3 Professor, Water science and Engineering Department, Bu-Ali Sina University

Abstract

In recent years, the conflict between environmental interests and farmers' livelihoods has emerged as one of the most crucial issues in the environmental and agricultural governance of the Zayandeh-Rood watershed. Hence, achieving a balance between economic profitability through the use of an optimal cropping pattern and preventing the excessive extraction of groundwater resources holds great importance for policymakers in this field. In this study, the environmental function was modeled by considering water resources limitation, while the economic function was modeled based on the economic profit derived from the cultivated crops in Kohpayeh-Segzi Plain in 1996-2011. The Nash function was optimized by using constrained nonlinear optimization by taking into account the limitation of water resources in each year. After optimizing the Nash function, the cropping pattern was determined using both game theory (GT) method and linear programming (LP) method. Results indicated 30% reduction in water consumption with the GT and 17% reduction with the LP method. Additionally, the profit reductions for these two methods were 16% and 3%, respectively, compared to the base case. Furthermore, the results revealed that the groundwater level in the representative hydrograph of the plain decreased by 3.94 and 2.23 m in the GT and LP methods, respectively. Conversely, in the optimized GT method with an economic function weight of 0.5, the groundwater level of the plain increased by 8.67 m. Considering the reduction of water consumption, profit reduction, and the increase in groundwater level, the optimized GT method with a weight of 0.5 was superior to the LP method.

Keywords


  1. حمیدرضا نویدی، سعید کتابچی و معصومه مسی بیدگلی، 1399. مدخلی بر نظریه بازی‌ها. انتشارات دانشگاه شاهد.
  2. سازمان تحقیقات کشاورزی اصفهان، 1391. گزارش قیمت‌ها و مصرف نهاده‌ها.
  3. سازمان جهاد کشاورزی استان اصفهان. ،1400. بازنگری، تکمیل و تدوین الگوی کشت‌ بهینه محصولات زراعی و باغی استان اصفهان.
  4. عباسی، فریبرز.، سهراب، فرحناز و عباسی، نادر، ارزیابی وضعیت راندمان آب آبیاری در ایران.تحقیقات مهندسی سازه های آبیاری و زهکشی, 67: 113-120. doi:10.22092/aridse.2017.109617
  5. کلاهی، مهدی.، حسینعلی، فرهاد. و کریمائی طبرستانی، مجتبی.، 1401. تعیین الگوی بهینه کشت با هدف حداقل سازی آب مجازی و حداکثرسازی سود اقتصادی محصولات (مطالعه موردی: دشت عمرانی در خراسان رضوی).نشریه آبیاری و زهکشی ایران, 16(6): 1221-1232.

doi: 20.1001.1.20087942.1401.16.6.12.9

  1. گزارش بیلان آب منطقه‌ای اصفهان برای سال‌های 1376 تا 1390 برای دشت کوهپایه‌سگزی سال1394.
  2. مفتاح هلقی مریم, قربانی خلیل, کرامت زاده علی و سالاری جزی میثم, 2021. کاربرد نظریه بازی­ها در تعیین برداشت بهینه منابع آب و ارائه الگوی کشت بهینه (مطالعه ی موردی: حوضه آبریز قره سو).‎ نشریه پژوهش‌های حفاظت آب‌وخاک، 127(5): 69-87. doi: 22069/jwsc.2020.17430.3290
  3. Ali, P.J.M., Faraj, R.H., Koya, E., Ali, P.J.M. and Faraj, R.H., 2014. Data normalization and standardization: a technical report. Mach Learn Tech Rep, 1(1), pp.1-6.
  4. Bozorg-Haddad, O. ed., 2021. Essential tools for water resources analysis, planning, and management. Springer.
  5. Forouzani, M. and Karami, E., 2011. Agricultural water poverty index and sustainability. Agronomy for Sustainable Development31, pp.415-431.

doi:10.1051/agro/2010026

  1. Harsanyi, J.C. and Selten, R., 1972. A generalized Nash solution for two-person bargaining games with incomplete information. Management science18(5-part-2), pp.80-106. doi:10.1287/mnsc.18.5.80
  2. Hipel, K.W. and Obeidi, A., 2005. Trade versus the environment: Strategic settlement from a systems engineering perspective. Systems Engineering, 8(3), pp.211-233.

doi:10.1002/sys.20031

  1. Madani, K., 2010. Game theory and water resources. Journal of hydrology381(3-4), pp.225-238. doi:10.1016/j.jhydrol.2009.11.045
  2. Madani, K., 2014. Water management in Iran: what is causing the looming crisis?. Journal of environmental studies and sciences4, pp.315-328. doi:1007/s13412-014-0182-z
  3. Mays, L.W. and Tung, Y.K., 2002. Hydrosystems engineering and management. Water Resources Publication.
  4. Mehrpour, M.R., Kheybari, S., Srai, J.S. and Rohani, A., 2024. Integration of strategic and operational attributes to calculate the optimal cultivation of crops. Expert Systems with Applications236, p.121238. doi:1016/j.eswa.2023.121238
  5. Nazari, S., Ahmadi, A., Rad, S.K. and Ebrahimi, B., 2020. Application of non-cooperative dynamic game theory for groundwater conflict resolution. Journal of Environmental Management270, p.110889. doi:1016/j.jenvman.2020.110889
  6. Raquel, S., Ferenc, S., Emery Jr, C. and Abraham, R., 2007. Application of game theory for a groundwater conflict in Mexico. Journal of environmental management84(4), pp.560-571. doi:1016/j.jenvman.2006.07.011
  7. Snyder, L. J. 2017. Stanford Encyclopedia of Philosophy. pp. 1-22.
  8. Von Neumann, J. and Morgenstern, O., 1953. Theory of games and economic behavior: by J. Von Neumann and O. Morgenstern. Princeton university press.
  9. Zeng, Y., Li, J., Cai, Y., Tan, Q. and Dai, C., 2019. A hybrid game theory and mathematical programming model for solving trans-boundary water conflicts. Journal of Hydrology570, pp.666-681. doi:1016/j.jhydrol.2018.12.053