Document Type : Research Paper

Authors

1 Ph.D. student of Agrotechnology, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan

2 Assistant Professor, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan

3 National Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran

Abstract

Camelina is an oilseed plant that could produce proper yield in arid and semi-arid areas with low water consumption. To investigate camelina response (Sohail cv.) to application of different amounts of irrigation water, this study was conducted in 2022-23 in Khatam District, Yazd Province. Treatments included drip tape irrigating based on 100% (full irrigation as control), 75% and 50% of full irrigation. Results showed that the effect of irrigation treatments on biological yield, grain yield, harvest index, plant height and protein percentage of camelina was significant (p<0.05). However, by reducing the volume of irrigation water, biological yield decreased significantly, such that biological yield of 75% and 50% treatments decreased by, respectively, 18.3% and 46% compared to the control treatment. The highest grain yield (2373.3 kg ha-1) was obtained with the application of 2384 m3 ha-1 irrigation water (control). By reducing the amount of irrigation water by 75% and 50%, grain yield decreased by 31.4% and 40.0%, respectively. The harvest indices were 22.6%, 19.0% and 25.1% for 100%, 75%, and 50% treatments, respectively. The highest plant height was 90 cm for the control treatment. The water productivity ranged from 0.88 kg m-3 for 75% treatment to 1.04 kg m-3 for the full irrigation. The highest proline content was observed for the treatments of reducing the volume of irrigation water, in which the amount of proline increased by 1.4 times compared to the control treatment. The results showed that the amount of irrigation water required for camelina was lower compared to the common winter crops, especially in tape irrigation method. Therefore, this plant could be used as a low water-demanding for delayed planting in winter season.

Keywords

Main Subjects

  1. امیری‌دربان، ندا، نورمحمدی، قربان، شیرانی‌راد، امیرحسین، میرهادی، سیدمحمدجواد، و مجیدی، اسلام. 1400. بررسی پاسخ فیزیولوژیک و عملکرد دانه و روغن کاملینا (Camelina sativa Crantz) به کاربرد سولفات آمونیوم و سولفات پتاسیم تحت تنش خشکی انتهای فصل رشد. مجله علوم گیاهان زراعی ایران، 52، 87-99. DOI: 10.22059/IJFCS.2020.308214.654746
  2. جمشیدی‌زیناب، احد، حسنلو، طاهره، و محمدناجی، امیر. 1394. ارزیابی تحمل به خشکی چهار رقم کلزا (Brassica napus ) بر اساس خصوصیات فیزیولوژیکی و بیوشیمیایی. نشریه پژوهش‌های زراعی ایران، 13(3)، 583-597. DOI: 10.22067/GSC.V13I3.28963
  3. رستمی‌احمدوندی، حسین، کهریزی، دانیال، قبادی، روژین، و آبادی، علی‌اکبر. 1399. کاملینا، دانه روغنی منحصربه‌فرد با تحمل بالا به خشکی و سرما. مجله ترویجی گیاهان دانه روغنی، 2، 63-73.
  4. زرگری، علی. 1376. گیاهان دارویی، جلد اول، موسسه چاپ و انتشارات دانشگاه تهران. 976 صفحه.
  5. فروغی، ایمان. 1395. برآورد نیاز آبی، ضرایب گیاهی و سایر پارامترهای گیاه کاملینا و کلزا با استفاده از لایسیمتر زهکش‌دار برای منطقه خشک و نیمه خشک. پایان‌نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه رازی کرمانشاه.
  6. قربانلى، مه‌لقا، و نیاکان، مریم، 1384. بررسى اثر تنش خشکى بر روى میزان قندهای محلول، پروتئین، پرولین، ترکیبات فنلى و فعالیت آنزیم نیترات ردوکتاز گیاه سویا رقم گرگان 3. نشریه علوم دانشگاه تربیت معلم، 5، 537-550.
  7. قمرنیا، هوشنگ، دهقانیان، مهرنوش، و فروغی، ایمان. 1395-الف. بررسی حساسیت رقم‌های مختلف کلزا و یک رقم کاملینا به تنش خشکی در حالت دیم کامل. سومین کنگره علمی پژوهشی توسعه و ترویج علوم کشاورزی، منابع طبیعی و محیط‌زیست ایران. انجمن توسعه و ترویج علوم و فنون بنیادین. 22 شهریور. تهران، ایران.
  8. قمرنیا، هوشنگ، دهقانیان، مهرنوش.، کهریزی، دانیال، و فروغی، ایمان. 1395-ب. بررسی اثر سطوح مختلف آبیاری تکمیلی بر کارایی مصرف آب و عملکرد گیاه کاملینا. سومین کنگره علمی پژوهشی توسعه و ترویج علوم کشاورزی، منابع طبیعی و محیط‌زیست ایران. انجمن توسعه و ترویج علوم و فنون بنیادین. 22 شهریور. تهران، ایران.
  9. کهریزی، دانیال، و رستمی، ح.، 1392. اولین گزارش اصلاح ژنتیکی زیست فناورانه گیاه کاملینا و کشت آن در شرایط دیم. هشتمین کنگره بیوتکنولوژی جمهوری اسلامی ایران، تهران، دانشگاه شهید بهشتی. 15 تیرماه.
  10. Ahmed Z., Waraich E., Ahmad R., and Shahbaz M., 2017. Morpho-physiological and biochemical responses of Camelina (Camelina sativa crantz) genotypes under drought stress. International Journal of Agriculture and Biology, 19, pp. 01-07.

DOI: 10.17957/IJAB/15.0141

  1. Bakhshi B., Rostami-Ahmadvandi H., and Fanaei H.R., 2021. Camelina, an adaptable oilseed crop for the warm and dried regions of Iran. Central Asian Journal of Plant Science Innovation, 1(1), pp. 39-45. DOI: 22034/CAJPSI.2021.01.05
  2. Bronson, K.F., HUnsaker, D.J., and Thorp, K.R., 2019. Nitrogen fertilizer and irrigation effects on seed yield and oil in camelina. Agronomy Journal, 111, pp. 1–8.
  3. Crowley, J.G., and Fröhlich, A., 1998. Factors affecting the composition and use of Teagasc. https://t-stor.teagasc.ie/bitstream/handle/11019/1481/eopr-4319.pdf?sequence=1.
  4. Crowley, J.G., and Fröhlich, A., 1998. Factors affecting the composition and use of camelina. Teagasc.
  5. Estakhr, A., and Ranjbar, G.H., 2021. The preliminary study of camelina compatibility as a new oil crop in the temperate region of Fars province. Agrotechniques in Industrial Crops, 1(2), pp. 77-84. DOI: 10.22126/ATIC.2021.6525.1017
  6. French, A.N., Hunsaker, D., Thorp, K., and Clarke, T., 2009. Evapotranspiration over acamelina crop at Maricopa, Arizona. Industrial Crops and Products. 29, pp. 289–300. DOI: https://doi.org/10.1016/j.indcrop.2008.06.001
  7. Gan, Y., Angadi, S.V., Cutforth, H.W., Potts, D., Angadi, V.V., and McDonald, C.L., 2004. Canola and mustard response to short period of high temperature and water stress at different developmental stages. Canadian Journal of Plant Science, 84, pp. 697-704.
  8. Gugel, R.K., and Falk, G.K.C., 2006. Agronomic and seed quality evaluation of Camelina sativa in western Canada. Canadian Journal of Plant Science, 86, pp. 1047-1058.
  9. Heydari, N., 2014. Water productivity in agriculture: Challenges in concepts, terms and values. Irrigation and Drainage. 63(1), pp. 22-28. DOI:1002/ird.1816
  10. Hurtaud C., and Peyraud J.L., 2007. Effects of feeding camelina (seeds or meal) on milk fatty acid composition and butter spreadability. Journal of Dairy Science, 90 (11), pp. 5134-5145. DOI: https://doi.org/10.3168/jds.2007-0031
  11. Kumar, A. and Sharma, K.D., 2010. Leaf water content-a simple indicator of drought tolerance in crop plants. Indian Journal of AgriculturalSciences, 80, pp. 1095‒1097.
  12. Lawrence R. D., Anderson J.L., and Clapper J.A., 2016. Evaluation of camelina meal as a feedstuff for growing dairy heifers. Journal of Dairy Science, 99(8), pp. 6215-6228. DOI: 3168/jds.2016-10876
  13. Mierlita D., and Vicas S., 2015. Dietary effect of silage type and combination with camelina seed on milk fatty acid profile and antioxidant capacity of sheep milk. South African Journal of Animal Science, 45(1), pp. 1-11.

DOI: http://dx.doi.org/10.4314/sajas.v45i1.1

  1. Paula E.M., da Silva L.G., Brandao V.L.N., Dai X., and Faciola A.P., 2019. Feeding Canola, Camelina, and Carinata meals to ruminants. Animals, 9 (10): p. 704. DOI: 3390/ani9100704
  2. Pavlista, A.D., Hergert, G.W., Margheim, J.M. and Isbell, T.A., 2016. Growth of spring camelina (Camelina sativa) under deficit irrigation in western Nebraska. Industrial Crops and Products, 83, pp. 118-123. DOI: https://doi.org/10.1016/j.indcrop.2015.12.017
  3. Raziei Z., Kahrizi D., and Rostami-Ahmadvandi H., 2018. Effects of climate on fatty acid profile in Camelina sativa. Cellular and Molecular Biology, 64(5), pp. 91-96.

DOI: http://dx.doi.org/10.14715/cmb/2018.64.5.15

  1. Sairam, R.K. and D.C. Saxena, 2000. Oxidative stress and antioxidants in wheat genoypes: Possible mechanism of water stress tolerance. Journal of Agronomy and Crop Science, 184, pp. 55‒61. DOI:1046/j.1439-037x.2000.00358.x
  2. Sanehkoori, F.H., Pirdashti, H., and Bakhshandeh, E., 2021. Quantifying water stress and temperature effects on camelina (Camelina sativa) seed germination. Environmental and Experimental Botany, 186, 104450.

DOI: https://doi.org/10.1016/j.envexpbot.2021.104450

  1. Taranu, I., Gras, M., Pistol, G.C., Motiu, M., Marin, D.E., Lefter, N., Ropota, M., and Habeanu, M., 2014. ω-3 PUFA rich Camelina oil by-products improve the systemic metabolism and spleen cell functions in fattening pigs. Plos one, 9(10), pp. 1-15. DOI: 1371/journal.pone.0110186
  2. Verbruggen, N., and Hermans, C., 2008. Proline accumulation in plants: a review. Amino Acids, 35, pp. 753‒759. DOI: https://doi.org/10.1007/s00726-008-0061-6
  3. Waraich, E.A., Ahmed, Z., Ahmad, R., Ashraf, M.Y., Naeem M.S., and Rengel, Z., 2013. Camelina sativa, a climate proof crop, has high nutritive value and multiple-uses: A review. Australian Journal of Crop Science, 7, pp. 1551‒1559.