An Investigation on Physical Productivity of Water and Energy Indices in Two Contrasting Climates

Document Type : Research Paper

Authors

1 MSc Student of Water Resources Engineering, Water Engineering Department, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

2 Associate Professor, Water Engineering Department, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

3 Ph.D Student of Irrigation and Drainage, Water Engineering Department, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

Abstract

Water, food, and energy are three essential sources for maintaining life and fostering socio-economic development, and they are inseparably interconnected. The aim of the present study was to examine the indicators of water and energy efficiency of major agricultural products, namely, wheat and rapeseed, in two different climates in Sari (temperate and humid) and Sharifabad (hot and semi-arid) plains in Iran. To investigate these indicators in wheat and rapeseed crops, data from the agricultural year 2021-22 were utilized. Initially, the number of samples was determined based on the Cochran formula. Then, sampling was done using a questionnaire designed by the authors. The questionnaires numbered 300, and the collected information included inputs and production quantities. The results showed that the average water physical efficiencies in Sari Plain for wheat and rapeseed crops were 1.13 and 0.67 kg/m3, while in Sharifabad Plain, it was 0.83 and 0.35 kg/m3, respectively. Furthermore, the results indicated that the highest level of input energy in Sari and Sharifabad plains for wheat was 80618 and 71072 MJ/ha, respectively. The results also showed that greenhouse gas emissions were higher in Sari than in Sharifabad, probably because of excessive use of fertilizer and pesticide in Sari. The highest greenhouse gas emissions in Sari for wheat were 2495 kg CO2/ha, and in Sharifabad, it was 2299 kg CO2/ha. Overall, the results indicated that crop performance in humid regions was higher than in dry and semi-dry regions, and this indicator depends on various parameters, including water consumption and agronomic management.

Keywords


  1. احسانی، مهرزاد و خالدی، هومن، 1382. بهره‌وری آب کشاورزی. کمیته ملی آبیاری و زهکشی ایران، 116 صفحه.
  2. ازکیا، مصطفی، و دربان آستانه، علیرضا، 1393. روش­های کاربردی تحقیق. تهران، انتشارات کیهان، 538 صفحه.
  3. پازکی طرودی، محمد، عجم نوروزی، حسین، قنبری مالیدره، عباس، داداشی، محمدرضا، و دستان، سلمان، 1396. ارزیابی بیلان انرژی و انتشار دی‌اکسید کربن در مزارع تولید گندم (Triticum aestivum L.). بوم‌شناسی کشاورزی، 9(4)، صص. 1168-1193. doi: 22067/JAG.V9I4.54771
  4. حیدری، فائزه، شرفی، سعید، و محمدی قلعه‎نی، مهدی، 1402. رابطه شاخص‎های خشکسالی با انتشار گازهای گلخانه‌ای بخش کشاورزی ایران. آبیاری و زهکشی ایران، 17(2)، صص. 261-275.
  5. خدائی جوقان، آیدین، تاکی، مرتضی، و مطوریان، حمید، 1401. سنجش بهره‌وری انرژی، انتشار گازهای گلخانه­ای، پتانسیل گرمایش جهانی و شاخص پایداری بوم نظام­های گندم و کلزا در خرمشهر.دانش کشاورزی و تولید پایدار، 32(1)، صص. 309-324. doi: 22034/SAPS.2021.44507.2634
  6. درگاهی، محمدرضا، جهان، محسن، ناصری‎پور یزدی، محمدتقی، و قربانی، رضا، 1395. ارزیابی بیلان انرژی و تحلیل اقتصادی کلزا در استان گلستان. پژوهشهای کاربردی زراعی، 29(3)، صص. 50-62.

 doi: 10.22092/AJ.2016.112697

  1. سپه­وند، مراد، 1388. مقایسه نیاز آبی، بهره­وری آب و بهره­وری اقتصادی آن در گندم و کلزا در غرب کشور در سال‌های پر باران. پژوهش آب ایران، 3(4)، صص. 63 –
  2. سلامتی، نادر، باغانی، جواد، و عباسی، فریبرز، 1397. تعیین بهره‌وری مصرف آب در سامانه‌های آبیاری سطحی و بارانی گندم (مطالعه موردی بهبهان). تحقیقات آب‌ و خاک ایران، 49(4)، صص. 821-830.

 doi: 10.22059/IJSWR.2017.240752.667747

  1. سلطانی، افشین، رجبی، محمدحسین، زینلی، ابراهیم، و سلطانی، الیاس، 1391. ارزیابی مصرف انرژی در تولید گندم در گرگان. پژوهش‌های تولید گیاهی، 19(3)، صص. 143-171.
  2. نوری خواجه بلاغ، رسول، خالدیان، محمدرضا، و کاوسی کلاشمی، محمد، 1399. مقایسه شاخص‎های بهره‌وری آب محصولات عمده زراعی در دشت اردبیل. آبیاری و زهکشی ایران، 14(3)، صص. 894-904.
  3. واحدی، عادل، و ظریف نشاط، سعید، 1400. مقایسه جریان انرژی تولید گندم آبی و تحلیل اقتصاد انرژی در برخی مناطق ایران. ماشینهای کشاورزی، 11(2)، صص. 505-523.

 doi: https://doi.org/10.22067/jam.v11i2.81747

  1. Acaroglu, M., 1998. Energy from biomass, and applications. University of Selcuk, Graduate School of Natural and Applied Sciences, Turkey, 43 pp.
  2. Ararssa, A. A., Gebremariam, A.G., Mulat, W.L. and Mekonnen, M.M., 2019. Effects of irrigation management on yield and water productivity of Barley Hordeum vulgare in the upper Blue nile basin: case study in northern Gondar. Water Conservation Science and Engineering, 4, pp.113-121. doi: https://doi.org/10.1007/s41101-019-00071-8
  3. Beheshti Tabar, I., Keyhani, A. and Rafiee, S., 2010. Energy balance in Iran's agronomy (1990–2006). Renewable and Sustainable Energy Reviews, 14, pp.849-855.
  4. Camargo, G.G., Ryan, M.R. and Richard, T.L., 2013. Energy use and greenhouse gas emissions from crop production using the farm energy analysis tool. BioScience, 63, pp.263-273. doi: 1525/bio.2013.63.4.6
  5. Dastan, S., Siavoshi, M., Zakavi, D., Ghanbaria-malidarreh, A., Yadi, R., Ghorbannia Delavar, E. and Nasiri. A.R., 2012. Application of nitrogen and silicon rates on morphological and chemical lodging related characteristics in rice (Oryza sativa L.) north of Iran. Journal of Agricultural Science, vol.4, No.6.
  6. De, D., Singh, R. and Chandra, H., 2001. Technological impact on energy consumption in rainfed soybean cultivation in Madhya Pradesh. Applied Energy, 70, pp.193-213.

 doi: 10.1016/S0306-2619(01)00035-6

  1. Fan, X., Zhang, W., Chen, W. and Chen, B., 2020. Land–water–energy nexus in agricultural management for greenhouse gas mitigation. Applied Energy, 265, pp.114796. doi: 10.1016/j.apenergy.2020.114796
  2. Fan, Y., Wang, C. and Nan, Z., 2014. Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China. Agricultural Water Management, 146, pp.335-345. doi: 10.1016/j.agwat.2014.09.001
  3. Hatirli, S.A., Ozkan, B. and Fert, C., 2005. An econometric analysis of energy input–output in Turkish agriculture. Renewable and Sustainable Energy Reviews9(6), pp.608-623.

doi: 10.1016/j.rser.2004.07.001

  1. Hatirli, S.A., Ozkan, B. and Fert, C., 2006. Energy inputs and crop yield relationship in greenhouse tomato production. Renewable Energy, 31, pp.427-438.

doi: 10.1016/j.renene.2005.04.007

  1. Heydari, N., 2014. Water productivity in agriculture: Challenges in concepts, terms and values. Irrigation and Drainage, 63(1), pp.22-28. (In Persian)
  2. , 1995. Climate Change, the Science of Climate Change. In: Houghton, J.T., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A. and Maskell, K., (Eds). Intergovernmental panel on climate change. Cambridge: Cambridge University Press.
  3. Kitani, O., 1999. CIGR Handbook of Agricultural Engineering. American Society of Agricultural Engineers, United States of America.
  4. Kramer, K.J., Moll, H.C. and Nonhebel, S., 1999. Total greenhouse gas emissions related to the Dutch crop production system. Agriculture, Ecosystems and Environment, 72, pp.9- doi: 10.1016/S0167-8809(98)00158-3
  5. Lal, R., 2004. Carbon emission from farm operations. Environment International, 30(7), 981-990. doi: 10.1016/j.envint.2004.03.005
  6. Li, M., Fu, Q., Singh, V. P., Liu, D. and Li, T., 2019. Stochastic multi-objective modeling for optimization of water-food-energy nexus of irrigated agriculture. Advances in Water Resources127(12), pp.209-224. doi: 1016/j.advwatres.2019.03.015
  7. Mandal, K., Saha, K., Ghosh, P., Hati, K. and Bandyopadhyay, K., 2002. Bioenergy and economic analysis of soybean-based crop production systems in central India. Biomass and Bioenergy, 23, pp.337-345. doi: 1016/S0961-9534(02)00058-2
  8. Mansoori, H., Rezvani Moghaddam, P. and Moradi, R., 2012. Energy budget and economic analysis in conventional and organic rice production systems and organic scenarios in the transition period in Iran. Frontiers in Energy, 6(4), pp.341-350.

doi: 10.1007/s11708-012-0206-x

  1. Mohammadi, A., Rafiee, S., Jafari, A., Keyhani, A., Mousavi-Avval, S.H. and Nonhebel, S., 2014. Energy use efficiency and greenhouse gas emissions of farming systems in north Iran. Renewable and Sustainable Energy Reviews, 30, pp.724-733.

doi: 10.1016/j.rser.2013.11.012

  1. Molden, D., Oweis, T., Steduto, P., Bindraban, P., Hanjra, M.A. and Kijne, J., 2010. Improving agricultural water productivity: Between optimism and caution. Agricultural Water Management, 97(4), pp.528-535. doi: 1016/j.agwat.2009.03.023
  2. Nouri-khjebelagh, R., Sefidkouhi, M.A.G. and Khoshravesh, M., 2023. Evaluation of energy indices and greenhouse gas emissions in major horticultural crops and paddy crops in Tajan plain. Applied Water Science13(2), pp.39. doi: 1007/s13201-022-01840-y
  3. Platis, D.P., Anagnostopoulos, C.D., Tsaboula, A.D., Menexes, G.C., Kalburtji, K.L. and Mamolos, A.P., 2019. Energy analysis, and carbon and water footprint for environmentally friendly farming practices in agroecosystems and agroforestry. Sustainability, 11, pp.1664. doi: 3390/su11061664
  4. Singh, S. and Mittal, J.P., Energy in Production Agriculture. Mittal Pub, New Delhi.
  5. Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E., Haberl, H., Harper, R., House, J. and Jafari, M., 2014. Agriculture, Forestry and Other Land Use (AFOLU). Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
  6. Snyder, C., Bruulsema, T., Jensen, T. and Fixen, P., 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems and Environment, 133, pp.247-266. doi: 10.1016/j.agee.2009.04.021