Evaluation of Optical Remote Sensing Efficiency in Estimating Soil Surface Moisture and Comparing It with Thermal Data for Irrigation Management of Sugarcane

Document Type : Research Paper

Authors

1 Head of Remote Sensing and GIS Department of Sugarcane Development Research Institute

2 Associate Professor, Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Iran

3 Professor, Department of Irrigation and Drainage, Faculty of Water Science Engineering, Shahid Chamran University, Ahvaz, Iran

Abstract

Soil moisture is one of the most important parameters in water, soil and plant resources management. Therefore, the present study was conducted to evaluate the efficiency of thermal and optical remote sensing data in order to estimate soil moisture and irrigation planning in sugarcane fields of Khuzestan Province, Iran. For this purpose, soil moisture content for 9 passes of Landsat 8 and Sentinel 2 satellites was calculated using thermal and optical trapezoidal methods from April to October 2020 in Amirkabir Sugarcane Agro-industry fields. To validate the results, the measured soil moisture content data of 337 ground control points located in 18 sugarcane-growing fields measured by TDR350 dehumidifier were used simultaneously with the passage of the satellites. The results showed that TOTRAM model with a determination coefficient of 0.82 and error rate of RMSE and NRMSE as 4.45% and 12.9%, and OPTRAM model with an explanation coefficient of 0.93 and RMSE and NRMSE error of 3.14% and 12.1% were able to properly estimate soil surface moisture in sugarcane fields. Also, the results of evaluation of soil moisture maps for irrigation planning of sugarcane fields showed that these data could be used for irrigation planning with average NRMSE error of 16% and 9% in relation to ground irrigation time data for TOTRAM and OPTRAM models, respectively. In this regard, OPTRAM model data were more efficient compared to thermal data, due to better spatial resolution of optical data and less effect by environmental factors such as temperature and relative humidity of air and also the effect of adjacent pixels.

Keywords


  1. عبیات م، عبیات م و عبیات م 2022. برآورد رطوبت سطحی خاک در اراضی کشاورزی با استفاده از تصاویر ماهواره‌ای و شاخص‌های سنجش از دور (مطالعه موردی: شهرستان شوشتر)، تحقیقات آب‌وخاک ایران.
  2. شاه مرادی ص، غفاریان مالمیری ح و امینی م 2021. استخراج شاخص رطوبت سطحی خاک (TVDI) با استفاده از نمودار پراکندگی دما/ پوشش گیاهی و تصاویر مودیس، سنجش‌ازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 12(1), 38-62.
  3. محمدی معله‏زاده؛ جمال، حمزه؛ سعید ، ناصری؛ عبدعلی، (1401) برآورد رطوبت سطحی خاک و بررسی برنامه‏ریزی آبیاری اراضی نیشکر با استفاده از مدل ذوزنقه حرارتی، http://doi.org/10.22059/ijswr.2022.338383.669214، مجله تحقیقات آب‌وخاک ایران، 53 (10).
  4. Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; ESA Working Paper No. 12–13; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012.
  5. AMBROSONE, Mariapaola, et al. retrieving soil moisture in rainfed and irrigated fields using Sentinel-2 observations and a modified OPTRAM approach. International Journal of Applied Earth Observation and Geoinformation, 2020, 89: 102113.‏
  6. Babaeian, E., Sadeghi, M., Franz, T.E., Jones, S., Tuller, M., 2018. Mapping soil moisture with the OPtical TRApezoid Model (OPTRAM) based on long term MODIS observations. Remote Sens. Environ. 211, 425–440. https://doi.org/10.1016/j.rse.2018.04.29.
  7. Ben-Dor, E., Chabrillat, S., Demattê, J.A.M., Taylor, G.R., Hill, J., Whiting, M.L., et al. (2009). Using imaging spectroscopy to study soil properties. Remote Sensing of Environment, 113(Supplement 1), S38–S55.
  8. Baghdadi, N.; Choker, M.; Zribi, M.; El-hajj, M.; Paloscia, S.; Verhoest, N.; Lievens, H.; Baup, F.; Mattia, F. A new empirical model for radar scattering from bare soil surfaces. Remote Sens. 2016, 8, 920.
  9. Carlson, T. N., Gillies, R. R., & Perry, E. M. (1994). A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote sensing reviews9(1-2), 161-173.‏
  10. Carlson, T. (2007). An overview of the" triangle method" for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors7(8), 1612-1629.‏
  11. Engman, E. T., & Chauhan, N. (1995). Status of microwave soil moisture measurements with remote sensing. Remote Sensing of Environment, 51(1), 189-198.
  12. Gillies, R. R., Kustas, W. P., & Humes, K. S. (1997). A verification of the'triangle'method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface e. international journal of remote sensing18(15), 3145-3166.‏
  13. Kubelka, P., & Munk, F. (1931). Ein Beitrag zur Optik der Farbanstriche. Zeitschrift für Technische Physik, 12(11), 593-601.
  14. MANANZE, Sosdito; PÔÇAS, Isabel; CUNHA, Mário. Agricultural drought monitoring based on soil moisture derived from the optical trapezoid model in Mozambique. Journal of Applied Remote Sensing, 2019, 13.2: 024519.‏
  15. Rahimzadeh-Bajgiran, P., Omasa, K., & Shimizu, Y. (2012). Comparative evaluation of the Vegetation Dryness Index (VDI), the Temperature Vegetation Dryness Index (TVDI) and the improved TVDI (iTVDI) for water stress detection in semi-arid regions of Iran. ISPRS Journal of Photogrammetry and Remote Sensing68, 1-12.‏
  16. Rongali, G., Keshari, A. K., Gosain, A. K., & Khosa, R. (2018). A mono-window algorithm for land surface temperature estimation from Landsat 8 thermal infrared sensor data: a case study of the Beas River Basin, India. Pertanika J Sci Technol26(2), 829-840.‏
  17. Sadeghi, M., Babaeian, E., Tuller, M., & Jones, S. B. (2017). The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote sensing of environment198, 52-68.‏
  18. Sadeghi, A.M., Jones, S.B., Philpot, W.D., 2015. A linear physically – based model for remote sensing of soil moisture using short wave infrared bands. Remote Sens. Environ. 164, 66–76. https://doi.org/10.1016/j.rse.2015.04.007.
  19. Ranjbar, M. Akhoondzadeh, B. Brisco, M. Amani and M. Hosseini, "Soil moisture change monitoring from c and 1-band sar interferometric phase observations", IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 7179-7197, 2021.
  20. Wang, W., Huang, D., Wang, X. G., Liu, Y. R., & Zhou, F. (2011). Estimation of soil moisture using trapezoidal relationship between remotely sensed land surface temperature and vegetation index. Hydrology and Earth System Sciences15(5), 1699-1712.‏
  21. Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote sensing of Environment89(4), 467-483.‏