Document Type : Research Paper
Authors
1
Department of Water Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.
2
Department of Irrigation and Reclamation Engineering, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
Abstract
This research aimed to simulate the yield of maize cv. S. C 704 under conditions of separate application of salinity stress at different growth stages in mini-lysimeter, in Qazvin area, Iran. The experiment was performed as factorial and in a completely randomized design. Soil salinity treatments, as the main factor, included four levels of 1.7(S1), 3(S2), 5(S3) and 7(S4) dS.m-1. The sub-factors included different growth stages as follows: one-stage at 6-leaves (C1), flowering (C2), and milk stage (C3); and two-stages of C1C2, C1C3 and C2C3. By combining saline water (from a salt marsh) with a well fresh water (0.5 dS.m-1), saline water was prepared according to the treatments. Irrigation was done in a way that the salinity of input and output water from the mini-lysimeters was equal. The control treatment was irrigated with fresh water. By combining the water uptake reduction functions, the derived models were presented and evaluated for simulating yield reduction coefficient (α). The stress application data in one and two-growth stages were used for models calibration and validation, respectively. Applying the highest salinity level led to decrease in dry matter yield from 157.2 g. plant-1 (in S1 treatment) to 115.9, 53.2, 77.7, 86.1, 97 and 46.5 g. plant-1 in the C1, C2, C3, C1C2, C1C3 and C2C3 treatments, respectively. The results showed that crop sensitivity was different in one-stage and two-stage stress application. Salinity stress at flowering (C2) and milk stage (C3) had a more negative effect relative to C1C2 and C1C3. In this research, Van Genuchten's additive model and Dirksen-Maas-Hoffman's multipliable model could be recommended as the optimal models for crop yield simulation. Also, application of two-stage salinity stress (up to level of 7 dS.m-1) in C1C2 and C1C3, had higher yield relative to application of one-stage stress in C2 and C3 growth stages.
Keywords