Effect of Wick Irrigation System on Water Productivity, Growth and Yield Parameters of Tomato Plants in Greenhouse

Document Type : Research Paper

Authors

1 MSc Student of Department of Irrigation and Drainage Engineering, Tarbiat Modares University

2 Associated Professor, Agricultural Engineering Research Institute, AREEO, Karaj, Iran

3 Associate Prof., Department of Irrigation and Drainage Engineering, Tarbiat Modares University, Tehran, Iran.

Abstract

This study aimed to evaluate the efficiency of wick irrigation system in greenhouse cultivation of tomato plant and compare it with drip irrigation. The experiment was performed as factorial with a completely randomized design (CRD) in the research greenhouse of Tarbiat Modares University in 2021. Irrigation treatments included five levels (drip irrigation and wick irrigation with diameters of 1, 3, 4, and 5 cm) and two soil combination ("cocopeat, soil, fertilizer, perlite" and "soil, sand, fertilizer"), in 3 replications. The lowest and highest water consumption during the growing season was observed in wick irrigation with a diameter of 1 cm (29.25 L/plant) and in drip irrigation and wicks with a diameter of 5 cm (36 and 37.5 L/plant), respectively. The results showed differences of 19% and 4% in water consumption between, respectively, wick irrigation with a diameter of 1 and 5 cm compared to drip irrigation. Also, the difference in water consumption between wick irrigation (minimum and maximum water consumption) of 1 and 5 cm diameters was 28%. The yield in "soil, sand, fertilizer" cultivation bed was increased by 59% compared to the "cocopeat, soil, fertilizer, perlite" cultivation bed and the maximum tomato yield (700gr/plant) was observed in the wick irrigation with a diameter of 3 cm. Water consumption index in "soil, sand, fertilizer" cultivation bed was decreased 21%, rather than "cocopeat, soil, fertilizer, perlite" cultivation bed and increased water productivity by 100%. In wick irrigation, since water is always available, the plant does not face water stress and these results indicate that the wick irrigation system improves plant growth and increases production of wet and dry matter and water productivity in tomato plant. Although economic analysis has not been done in this research, but more crop yield along with less water consumption in the wick irrigation system would have more income for the user and can be an acceptable reason for using this irrigation method.

Keywords


  1. باقری، م. آل بوعلی، ف. صادقی،ح. جوانمردی، ش. (1393). بررسی تأثیر کم‌آبیاری بر تغییرات یونی، محتوای نسبی آب برگ، میزان پرولین و برخی ویژگی‌های ظاهری گیاه اطلسی. نشریه علوم باغبانی (3)28. صفحه 347-359
  2. رضایی سرجویی، م. (۱۳۹۸). بررسی بهره­ورری فیزیکی آب مصرف آب در ماش به روش آبیاری فتیله‌ای. پایان‌نامه کارشناسی ارشد رشته مهندسی کشاورزی - زراعت. دانشکده علوم و مهندسی کشاورزی. دانشگاه رازی. ایران.
  3. زارعی، ژ. حیدری، ح. (۱۳۹۶). بررسی بهره ورری فیزیکی آب مصرف آفتابگردان در روش‌های آبیاری سطحی و فتیله‌ای. مجله تنش‌های محیطی در علوم زراعی. 10(4): صفحه 521-530.
  4. عابدی باباحیدری، ح. (۱۳۹۶). مقایسه روش‌های آبیاری سطحی، قطره‌ای و واترباکس در استقرار نهال زالزالک برای کنترل پدیده بیابان‌زایی. پایان‌نامه کارشناسی ارشد رشته مهندسی آب گرایش آبیاری و زهکشی. دانشکده کشاورزی. دانشگاه شهرکرد. ایران.
  5. محمدی اروجه، ر. (۱۳۹۶). بررسی بهره‌وری فیزیکی آب سامانه آبیاری فتیله‌ای برای کشت‌های گلخانه‌ای. پایان‌نامه کارشناسی ارشد رشته مهندسی آب گرایش آبیاری و زهکشی. دانشکده کشاورزی. دانشگاه شهرکرد. ایران.
  6. Blum, A., (1999). Towards standard assay of drought resistance in crop plants. In J.M. Ribaut and D. Poland (Eds). M. A strategic planning workshop, 21-25 June 1999.
  7. Budiarto, R., Ridwan, M. K., Haryoko, A., Anwar, Y. S., Suhono, and Suryopratomo, K. (2013). Sustainability Challenge for Small Scale Renewable Energy use in Yogyakarta. Procedia Environmental Sciences, 17, 513–518.

https://doi.org/10.1016/j.proenv.2013.02.066

  1. Chaturvedi, A. K., Surendran, U., Gopinath, G., MadhavaChandran, K., Anjali, N. K., and Mohd. Fasil C.T (2019). Elucidation of stage specific physiological sensitivity of okra to drought stress through leaf gas exchange, spectral indices, growth and yield parameters. Agricultural Water Management, 222, 92–104.
  2. Felipe, A. J. B., and Bareng, J. L. R. (2022). Growth and yield assessment of lettuce (Lactuca sativa L.): an economic feasibility and performance evaluation of capillary wick irrigation system. Plant Science Today, 9(1), 62-69.‏
  3. Ferrarezi, R. S., and Testezlaf, R. (2016). Performance of wick irrigation system using self-compensating troughs with substrates for lettuce production. Journal of Plant Nutrition, 39(1), 147-161.‏
  4. Gheysari, M., Loescher, H.W., Sadeghi, S.H., Mirlatifi, S.M., Zareian, M.J. and G. Hoogenboom. 2015. Water-yield relations and water use efficiency of maize under nitrogen fertigation for semiarid environments: experiment and synthesis. In: Sparks, D.L. (Ed.), Advances in Agronomy, pp. 175–229
  5. Goldhamer, D. A., (2005). Tree Water Requirements and Regulated Deficit Irrigation. Pistachio Production Manual. 4th Ed. Ferguson L. University of California, Davis.
  6. Heydari, N., and Liaghat, A. (2022). Effectiveness of Wick Irrigation Method on Yield and Water Use Efficiency on Maize in Semi-Arid Area. Environment and Water Engineering, 8(1), 122-132.‏
  7. Masuda, M., and Fukumoto, S. (2008). Potential for tomato cultivation using capillary wick-watering method. Okayama University
  8. Molden, D. 2007. Water for food. Water for life. A comprehensive assessment of water management in agriculture. International Water Management Institute (IWMI) and FAO.
  9. Mungai, M. M., Wariara, K., Gathogo, H. P., Mwibanda, W. J. and Ochieng, A. A. (2017). Water use and plant growth of selected container grown ornamental plants under capillary wick based irrigation system and conventional irrigation system in Kenya." Int. J. Agron. Agric. Res 11: 32-41.
  10. Orge, R. F., and Sawey, D. A. (2019). Field performance of the capillary wick irrigation (capillarigation) system for rice-based crops. GEOMATE Journal, 17(61), 41-49.
  11. Semananda, N. P., Ward, J. D., and Myers, B. R. (2016). Evaluating the efficiency of wicking bed irrigation systems for small-scale urban agriculture. Horticulturae, 2(4), 13.‏
  12. Shabani, A., and Sepaskhah, A. R. (2017). Leaf area estimation by a simple and non-destructive method. Iran Agricultural Research, 36(2), 101-105.‏
  13. Wesonga, J. M., Wainaina, C., Ombwara, F. K., Masinde, P. W., and Home, P. G. (2014). Wick material and media for capillary wick based irrigation system in Kenya. International Journal of Science and Research, 3(4), 613-617.