Uncertainty Analysis of the SWAP Model in a Sugarcane Field with Subsurface Controlled Drainage

Document Type : Research Paper

Authors

1 Assistant Prof., Agricultural Engineering Research Institute, Ardabil Agricultural and Natural Resources Research and Education Center, AREEO, Ardabil, Iran

2 Department of Agriculture, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran

Abstract

It is important to assess the uncertainties involved in agro-hydrologic simulations because they are subject to varying degrees of uncertainty. Uncertainty analysis of the agro-hydrological models can provide useful insights into the degree of confidence in the model results. In this study, uncertainty analysis of a distributed application of the SWAP model to a sugarcane field with subsurface controlled drainage was conducted using a hybrid uncertainty analysis scheme, combining Generalized Likelihood Uncertainty Estimation (GLUE) and Unified Particle Swarm Optimization (UPSO). The results revealed a high variability of the calibrated parameters and the necessity of an uncertainty assessment for the SWAP simulations. Strong parameter correlations highlighted the need for calibration of the model parameters against diverse calibration data in a simultaneous manner. The 95% prediction uncertainty bands obtained for the  hydrological (soil water content, water table level, sub-surface drainage outflow), solute transport (soil water solute concentration and sub-surface drainage outflow salinity), and biophysical (leaf area index, cane, and sucrose dry yield) simulations enveloped 73-80%, 45-58%, and 75-100% of the corresponding total observed data (including both calibration and validation datasets), respectively, with an r-factor (the ratio of the average thickness of the 95PPU band to the standard deviation of the corresponding measured variable) of 0.83-0.98, 1.43-1.96, and 0.75-1.11. The thickness of the derived 95PPU bands for the biophysical simulations showed an increasing trend over the simulation period.

Keywords


  1. پرچمی عراقی، ف.، سمیع‌پور، ف. و صادقی لاری، ع. 1399. کاربرد مدل SWAP برای مدل‌سازی یک سامانه مزروعی با زهکشی زیرزمینی کنترل شده در یک مزرعه نیشکر، نشریه پژوهش آب در کشاورزی، 34(1): 64-51.
  2. پرچمی عراقی، ف.، میرلطیفی، س.م.، قربانی دشتکی، ش. و صادقی لاری، ع. 1394الف. مقایسه تبخیر-تعرق مرجع پنمن-مانتیث ASCE و پنمن-مانتیث فائو-56 در مقیاس­های زمانی زیرروزانه مختلف: یک مطالعه عددی، نشریه آب و خاک، 29(5): 1189-1173.
  3. پرچمی عراقی، ف.، میرلطیفی، س.م.، قربانی دشتکی، ش.، وظیفه‌دوست، م. و صادقی لاری، ع. 1395ب. توسعه یک چارچوب ریزمقیاس‌سازی به‌منظور برآورد تبخیر-تعرق مرجع زیرروزانه: 1- مقایسه عملکرد برخی مدل‌های ریزمقیاس‌سازی داده‌های هواشناسی روزانه، نشریه آب و خاک، 30(2): 354-334.
  4. صادقی لاری، ع. 1391. بررسی اثرات کنترل سطح ایستابی بر روی میزان جریان، نیتروژن و فسفر خروجی از زهکش‌های زیرزمینی در نواحی خشک (مطالعه موردی: شعیبیه خوزستان). پایان­نامه دکتری، دانشگاه شهید چمران، اهواز. 178 ص.
  5. Abbaspour KC, 2008. SWAT-CUP2: SWAT Calibration and Uncertainty Programs - A User Manual, 2. Department of Systems Analysis, Integrated Assessment and Modelling (SIAM), Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland.
  6. Bessembinder JJE, Dhindwal AS, Leffelaar PA, Ponsioen T, and Singh S, 2003. Analysis of crop growth. In: van Dam J.C., and Malik R.S. (Eds.), Water Productivity of Irrigated Crops in Sirsa District, India: Integration of remote sensing, crop and soil models and geographical information systems. Alterra, Wageningen, The Netherlands, pp. 59-82.
  7. Beven K, 2006. A manifesto for the equifinality thesis. Journal of Hydrology, 320(1-2): 18-36.
  8. Beven KJ, and Binley A, 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes, 6(3): 279-298.
  9. Binley A, and Beven K, 2003. Vadose zone flow model uncertainty as conditioned on geophysical data. Groundwater, 41(2): 119-127.
  10. Gorgoglione A, Bombardelli FA, Pitton BJ, Oki LR, Haver DL, and Young TM, 2019. Uncertainty in the parameterization of sediment build-up and wash-off processes in the simulation of sediment transport in urban areas. Environmental Modelling & Software, 111: 170-181.
  11. Haverkamp R, Leij FJ, Fuentes C, Sciortino A, and Ross P, 2005. Soil water retention. Soil Science Society of America Journal, 69(6): 1881-1890.
  12. Javani-Jouni H, Liaghat A, Hassanoghli A, and Henk R, 2018. Managing controlled drainage in irrigated farmers’ fields: A case study in the Moghan plain, Iran. Agricultural Water Management, 208: 393-405.
  13. Kroes J, van Dam J, Bartholomeus R, Groenendijk P, Heinen M, Hendriks R, Mulder H, Supit I, and van Walsum P, 2017. SWAP version 4, Theory description and user manual. Technical Report. Wageningen Environmental Research, ESG Report 2780, Alterra, Wageningen, The Netherlands.
  14. Li P, and Ren L, 2019. Evaluating the effects of limited irrigation on crop water productivity and reducing deep groundwater exploitation in the North China Plain using an agro-hydrological model: I. Parameter sensitivity analysis, calibration and model validation. Journal of Hydrology, 574: 497-516.
  15. Loague K, and Green RE, 1991. Statistical and graphical methods for evaluating solute transport models: overview and application. Journal of Contaminant Hydrology, 7(1): 51-73.
  16. Moriasi DN, Arnold JG, van Liew MW, Bingner RL, Harmel RD, and Veith TL, 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transaction of the ASAE, 50(3): 885-900.
  17. Mugunthan P, and Shoemaker CA, 2006. Assessing the impacts of parameter uncertainty for computationally expensive groundwater models. Water Resources Research, 42(10): W10428.
  18. Parsopoulos KE, and Vrahatis MN, 2004. UPSO: A unified particle swarm optimization scheme. In: Simos T., and Maroulis G. (Eds.), Lecture Series on Computer and Computational Sciences. VSP International Science Publishers, Zeist, The Netherlands, pp. 868-873.
  19. Pollacco JAP, and Mohanty BP, 2012. Uncertainties of water fluxes in soil–vegetation–atmosphere transfer models: Inverting surface soil moisture and evapotranspiration retrieved from remote sensing. Vadose Zone Journal, 11(3).
  20. Schaap MG, and Leij FJ, 1998. Database-related accuracy and uncertainty of pedotransfer functions. Soil Science, 163(10): 765-779.
  21. Shafiei M, Ghahraman B, Saghafian B, Davary K, Pande S, and Vazifedoust M, 2014. Uncertainty assessment of the agro-hydrological SWAP model application at field scale: A case study in a dry region. Agricultural Water Management, 146: 324-334.
  22. Soleimannejad F, 2004. Six Sigma, Basic Steps and Implementation. AuthorHouse, Bloomington, Indiana, USA, 248 pp.
  23. Supit I, Hooijer AA, and van Diepen CA, 1994. System description of the Wofost 6.0 crop simulation model implemented in CGMS. Joint research centre; European commission.
  24. Tolson BA, and Shoemaker CA, 2008. Efficient prediction uncertainty approximation in the calibration of environmental simulation models. Water Resources Research, 44(4): W04411.
  25. United Nations Environment Programme (UNEP), 2015. Nile River Basin: Nile Basin Adaptation to Water Stress: Comprehensive Assessment of Flood & Drought Prone Areas. (Available at: http://wedocs.unep.org/handle/20.500.11822/14067).
  26. Vazifedoust M, van Dam JC, Feddes RA, and Feizi M, 2008. Increasing water productivity of irrigated crops under limited water supply at field scale. Agricultural Water Management, 95(2): 89-102.
  27. Wesseling J, Kroes J, Oliveira TC, and Damiano F, 2020. The impact of sensitivity and uncertainty of soil physical parameters on the terms of the water balance: Some case studies with default R packages. Part I: Theory, methods and case descriptions. Computers Electronics in Agriculture, 170: 105054.
  28. Wesseling J, Kroes J, Oliveira TC, and Damiano F, 2020. The impact of sensitivity and uncertainty of soil physical parameters on theterms of the water balance: Some case studies with default R packages. PartII: Results and discussion. Computers Electronics in Agriculture, 170: 105072.
  29. Yang J, Reichert P, Abbaspour KC, Xia J, and Yang H, 2008. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. Journal of Hydrology, 358(1): 1-23.