Investigation of Rice Actual Evapotranspiration and Crop Coefficients for Shiroudi and Hashemi Cultivars in Sari

Document Type : Research Paper

Author

Soil and Water Research Department, Khorasan-Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran

Abstract

Measuring the actual evapotranspiration of rice is very important for appropriate and optimal water management in the Northern provinces of Iran. The present study aimed to measure the actual evapotranspiration for two Shiroudi and Hashemi cultivars of rice, in paddy fields of Sari Agricultural and Natural Resources University (SANRU). For this propose, six drainage lysimeters were designed and constructed. After cultivating rice inside the lysimeters, the amount of precipitation, irrigation water, and deep percolation were measured in 5-days intervals. Investigation of the lysimeter results showed differences between water requirement and also deep percolation of the two studied cultivars in growth period (seeding to harvest): water requirement was 351 and 397 mm and the deep percolation was 48 and 97 mm, for cultivars Shiroudi and Hashemi, respectively. Also, the crop coefficients were obtained by comparison of the lysimeter’s actual evapotranspiration and 14 indirect methods of reference evapotranspiration estimation. Considering the cultivars and the estimating method, the crop coefficients were in the following ranges: 0.73-1.12 for the initial stage, 0.83-1.41 for the middle stage, and 0.64-1.15 for the final stage. Also, the average estimation Error Percentage (PE) of the resulting crop coefficients compared to the recommended coefficients of FAO-Penman-Monteith method, is 11%, 11% and 8% for Hashemi cultivar and 15%, 23%, and 16% for Shiroudi cultivar, in initial, middle and final stages, respectively; which shows the necessity of determining crop coefficients for each cultivar under local conditions. The coefficients obtained in the current study can be useful to calculate the water requirements of Hashemi and Shiroudi cultivars based on indirect estimation methods for designing water projects and water delivery in the irrigation and drainage networks in the research area.

Keywords


  1. شهبازی، ک. و بشارتی، ح. 1392. بررسی اجمالی وضعیت حاصلخیزی خاک­های کشاورزی ایران. نشریه مدیریت اراضی، جلد 1، شماره 1، صفحه­های 1 تا 15. 
  2. صاحب­جمع، ع.ا. 1381. مطالعات تفصیلی دقیق خاکشناسی و طبقه­بندی اراضی ایستگاه تحقیقات کشاورزی طرق- استان خراسان رضوی. گزارش نهایی. نشریه شماره 1146. مؤسسه تحقیقات خاک و آب.
  3. زنگی­آبادی، م.، گرجی اناری، م.، شرفا، م.، خاوری خراسانی، س. و سعادت، س. 1395.  رابطه شاخص گنجایش انتگرالی آب با برخی ویژگی­های فیزیکی خاک در استان خراسان رضوی. نشریه آب و خاک، جلد 30، شماره 4، صفحه­های 1192 تا 1201.
  4. زنگی­آبادی، م.، گرجی اناری، م.، شرفا، م.، کشاورز، پ. و سعادت، س. 1396.  ارتباط انرژی انتگرالی آب در دامنه­های مختلف رطوبتی با شاخص S در خاک­های با بافت متوسط و سبک. نشریه آب و خاک، جلد 31، شماره 2، صفحه­های 386 تا 398.
  5. زنگی­آبادی، م.، گرجی اناری، م.، غالبی، س. و رمضانی­مقدم، م.ر. 1396. تأثیر توزیع اندازه تخلخل خاک بر میزان انرژی انتگرالی آب در دامنه­های مختلف رطوبتی. نشریه پژوهش­های خاک، جلد 31، شماره 3، صفحه­های 463 تا 472.
  6. عباسی، ف.، عباسی، ن. و توکلی، ع.ر. 1396. بهره­وری آب در بخش کشاورزی؛ چالش­ها و چشم­اندازها. نشریه آب و توسعه پایدار، جلد 4، شماره 1، صفحه­های 141 تا 144.
  7. ناصری، ا.، عباسی، ف. و اکبری، م. 1396. برآورد آب مصرفی در بخش کشاورزی به روش بیلان آب. مجله تحقیقات مهندسی سازه­های آبیاری و زهکشی، جلد 18، شماره 68، صفحه­های 17 تا 32.
    1. Aparicio, V. and Costa, J.L. 2007. Soil quality indicators under continuous cropping systems in the Argentinean Pampas. Soil & Tillage Research, 96: 155–165.
    2. Asgarzadeh, H., Mosaddeghi, M.R., Mahboubi, A.A., Nosrati, A. and Dexter, A.R. 2010. Soil water availability for plants as quantified by conventional available water, least limiting water range and integral water capacity. Plant and Soil, 335: 229–244.
    3. Asgarzadeh, H., Mosaddeghi, M.R., Mahboubi, A.A., Nosrati, A. and Dexter, A.R. 2011. Integral energy of conventional available water, least limiting water range and integral water capacity for better characterization of water availability and soil physical quality. Geoderma, 166: 34– 42.
    4. Betz, C.L., Allmaras, R.R., Copeland, S.M. and Randall, G.W. 1998. Least limiting water range: traffic and long term tillage influences in a Webster soil. Soil Science Society of America Journal, 62: 1384–1393.
    5. Da Silva, A.P., Kay, B.D. and Perfect, E. 1994. Characterization of the least limiting water range of soils. Soil Science Society of America Journal, 58: 1775–1781.
    6. Da Silva, A.P. and Kay, B.D. 1996. The sensitivity of shoot growth of corn to the least limiting water range of soils. Plant and Soil, 184: 323–329.
    7. Da Silva, A.P. and Kay B.D. 2004. Linking process capability analysis and least limiting water range for assessing soil physical quality. Soil & Tillage Research, 79: 167–174.
    8. Groenevelt, P.H., Grant, C.D. and Semetsa, S. 2001. A new procedure to determine soil water availability. Australian Journal of Soil Research, 39: 577–598.
    9. Hao, X., Ball, B.C., Culley, J.L.B., Carter, M.R. and Parkin, G.W. 2007. Soil density and porosity. In Carter, M.R. and Gregorich, E.G. (eds.) Soil Sampling and Methods of Analysis. Taylor & Francis, Abingdon. 743–759.
    10. Imaz, M.J., Virto, I., Bescansa, P., Enrique, A., Fernandez-Ugalde, O. and Karlen D.L. 2010. Soil quality indicator response to tillage and residue management on semi-arid Mediterranean cropland. Soil & Tillage Research, 107: 17–25.
    11. Kroetsch, D. and Wang, C. 2007. Particle size distribution. In Carter, M.R. and Gregorich, E.G. (eds.) Soil Sampling and Methods of Analysis. Taylor & Francis, Abingdon. 713–725.
    12. Larney, F.J. 2007. Dry-aggregate size distribution. In Carter, M.R. and Gregorich, E.G. (eds.) Soil Sampling and Methods of Analysis. Taylor & Francis, Abingdon. 821–831.
    13. Letey, J. 1985. Relationship between soil physical properties and crop production. Advances in Soil Science, 1: 277–294.
    14. Minasny, B. and McBratney, A.B. 2003. Integral energy as a measure of soil–water availability. Plant and Soil, 249: 253–262.
    15. Moura, E.G., Moura, N.G., Marques, E.S., Pinheiro, K.M., Costa, Sobrinho, J.R.S. and Aguiar, A.C.F. 2009. Evaluating chemical and physical quality indicators for a structurally fragile tropical soil. Soil Use and Management, 25: 368–375.
    16. Reynolds, W.D., Drury, C.F., Tan, C.S., Fox, C.A. and Yang, X.M. 2009. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma, 152: 252– 263.
    17. Reynolds, W.D., Drury, C.F., Yang, X.M., Fox, C.A., Tan, C.S. and Zhang, T.Q. 2007. Land management effects on the near-surface physical quality of a clay loam soil. Soil & Tillage Research, 96: 316–330.
    18. Reynolds, W.D., Drury, C.F., Yang, X.M. and Tan, C.S. 2008. Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma, 146: 466–474.
    19. Reynolds, W.D. and Topp, G.C. 2007. Soil water desorption and imbibition: tension and pressure techniques. In Carter, M.R. and Gregorich, E.G. (eds.) Soil Sampling and Methods of Analysis. Taylor & Francis, Abingdon. 981–997.
    20. Rezaei, A., Gilkes, R.J. and Andrews, S.S. 2006. A minimum data set for assessing soil quality in rangelands. Geoderma, 136: 229–234.
    21. Schoenholtz, S.H., Van Miegroet, H. and Burger, J.A. 2000. A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. Forest Ecology and Management, 138: 335-356.
    22. Skjemstad, J.O. and Baldock, J.A. 2007. Total and organic carbon. In Carter, M.R. and Gregorich, E.G. (eds.) Soil Sampling and Methods of Analysis. Taylor & Francis, Abingdon. 225–237.
    23. Van Genuchten, M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44: 892–898.