Document Type : Research Paper

Authors

Assistant Professor

Abstract

This study was conducted to evaluate the effects of exogenous applications of salicylic acid on improvement of drought tolerance in Madagascar periwinkle (Catharanthus roseus L.). The experiment was arranged as factorial based on a completely randomized design (CRD). Salicylic acid concentrations of 0, 0.5, 1, 1.5 mM were foliar sprayed on pot plants treated with three levels of irrigation including 30%, 60%, and 100% Field Capacity). Application of salicylic acid was repeated three times with three-day interval, while plants were exposed to drought stress for four weeks. The traits such as flower number, flower diameter, fresh weigh of individual flower, shoot number, and water use efficiency (WUE) were evaluated in this study. Based on the results, the effect of salicylic acid on severe deficit irrigation (30% PC) was significant, and the highest number of flowers at this level was observed in foliar application of 0.5 and 1 mM salicylic acid. Also, the highest fresh weight of single flower and number of sub-branches were obtained in application of 0.5 mM salicylic acid under severe deficit irrigation. In addition, exogenous salicylic acid at all levels significantly improved the flower diameter, which could have a major impact on the aesthetic properties of this plant under deficit-irrigation conditions. In total, due to availability of salicylic acid and easy use, foliar application of salicylic acid at 0.5 mM concentration would be recommended to improve Madagascar periwinkle drought tolerance under severe deficit irrigation.
 

Keywords

Main Subjects

  1. امیری ده احمدی، ر.، رضوانی مقدم، پ و احیایی، ح.ر. 1391. تاثیر  خشکی بر برخی خصوصیات مرفولوژیکی و عملکرد سه گیاه دارویی شوید، گشنیز و رازیانه در شرایط گلخانه. نشریه پژوهش­های زراعی ایران. 10: 116-124.
  2. بالجانی، ر. و شکاری، ف. 1391. تاثیر پیش تیمار با سالیسیلیک اسید بر روابط شاخص­های رشد و عملکرد در گیاه گلرنگ (Carthamus tinctorius L.) تحت شرایط خشکی آخر فصل. دانش کشاورزی و تولید پایدار. 89:1-103.
  3. خزاعی، ح.، محمدآبادی، ع. و برزویی، ا. 1384. بررسی صفات مورفولوژیک و فیزیولوژیک انواع ارزن در رژیمهای مختلف آبیاری. مجله پژوهش­های زراعی ایران. 3: 44-35.
  4. حکمت شعار، ح. 1372. فیزیولوژی گیاهان در شرایط دشوار (ترجمه). انتشارات نیکنام. 251 ص.
  5. سبحانی، ا و آخوندی میبدی، ح. 1379. بررسی مقاومت به شوری در یونجه­های گرمسیری تحت شرایط محیطی. ششمین همایش گیاهان و منابع طبیعی. 274 ص.
  6. کوچکی ، ع و نصیری محلاتی، م. 1371. اکولوژی گیاهان زراعی. انتشارات جهاد دانشگاهی. 291 ص.
  7. مجد نصیری، ب. 1380. ارزیابی خصوصیات فنولوژیکی و فیزیولوژیکی رازیانه تابستانه تحت شرایط خشکی. مجله گیاهشناسی زیست محیطی. 68: 264-272. 
  8. وفابخش، ج.، نصیری محلاتی، م و کوچکی، ع. 1387. اثر خشکی برعملکرد وکارایی مصرف نور در ارقام کلزا .(Brassica napus) مجله پژوهش­های زراعی ایران شماره 6: 193-208.
  9. Abd El-Mageed, T.A., Semida, W.M., Rady, M.M., 2017. Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation. Agricultural Water Management, 193, pp.46-54.
  10. Bessembinder., J. J. E., Leffelaar P. A.,  Dhindwal, A. S., Ponsioen, T. C. 2005.Catharanthus roseus (L.) G. Don. An important drug: its applications and production. Pharmacie Globale.4: 98-110.
  11. Cattivelli, L., Rizza, F., Badeck, F. W., Mazzucotelli, E., Mastrangelo, A. M., Cheruth, A., Ragupathi, S., Muthiah, G., Rajaram, P. 2008. Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. Plant Biol. Pathol. 331:42–47.
  12. Chavan, V.M. 1961. Niger and Safflower. Indian Central Oilseeds Committee, Examiner Press. Bombay, India. 150 p.
  13. Cheruth, A., Ragupathi, G., Beemarao, S., Muthiah, G., Rajaram, P. 2008. Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. Plant Biol. Pathol. 331:42–47.
  14. Chyliński, W.K., Łukaszewska, A.J., Kutnik, K., 2007. Drought response of two bedding plants. Acta Physiologiae Plantarum, 29(5), p.399.
  15. Dat, J.F., Lopez Delgado, H., Foyer, C. H., Scott, I. M. 1998. Parallel changes in H2O2 and catalase during thermo tolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol. 116:1351-1357.
  16. Davies, P.J. 2005. Plant hormones: biosynthesis, signal transduction, action! Springer Science & Business Media.
  17. Eraslan, F., Inal, A., Gunes, A., Alpaslan, M. 2007. Impact of exogenous salicylic acid on growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Sci Hortic. 113:120–128.
  18. Fardus, J., Abdul Matin,M.d., Hasanuzzaman, M.d., Hossain, S.D.  Nath, Hossain, M.D. A., Rohman, M. and Hasanuzzaman, M. 2017. Exogenous salicylic acid-mediated physiological responses and improvement in yield by modulating antioxidant defense system of wheat under salinity. Not.  Sci. Biol. 9(2): 219-232. DOI: 10.15835/nsb929998.
  19. Garcia, M.G., Busso C.A., Polci, P., Garcia, L.N., Echenique, V. 2002. Water relation and leaf growth rate of three Agropyron genotypes under water stress. Biol. Cell. 26:309-317.
  20. Hayat, S and A. Ahmad. 2007. Salicylic acid: A Plant Hormone. Springer. 401p.
  21. Heilmeier, H., Wartinger, A., Erhard, M., Zimmerman R., Horn, R., Schulze, E. D. 2002. Soil drought increases leaf and whole-plant water use of Prunus dulcis grown in the Negev Desert. Oecologia. 130:329-336.
  22. Junaid, A., Sheba Haque, K., Zahid Hameed, S., Zohra, F., Mehpara, M. 2010. Catharanthus roseus (L.) G. Don. An important drug: its applications and production. Pharmacie Globale. 4:1-16.
  23. Kareem, F., Rihan, H. and Fuller, M. 2017. The effect of exogenous applications of      salicylic acid and molybdenum on the tolerance of drought in wheat. Agri Res. Tech.     Open Access J. 9(4).
  24. Klessig, D. F. and J. Malamy. 1994. The salicylic acid signal in plants. Plant Mol. Biol. 26:1439-1458.
  25. Lei, T., Feng, H., Sun, X., Dai, Q.L., Zhang, F., Liang, H.G., Lin, H.H. 2010. The alternative pathway in cucumber seedlings under low temperature stress was enhanced by salicylic acid. Plant Growth Regul. 60:35–42.
  26. Metwally, A., Finkemeier, I., Georgi, M. K. Dietz, J. 2003. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol. 32:272-281.
  27. Niu, G. and D.S. Rodriguez. 2006. Impact of drought and temperature on growth and leaf gas exchange of six bedding plant under greenhouse conditions. HortScience. 41:1408-1411.
  28. Pandey, R.K., Maranville, J.W., Admou, A. 2001. Tropical wheat response to irrigation and nitrogen in a Sahelian environment. I. Grain yield, yield components and water use efficiency. Eur. J. of Agr. 15:93-105.
  29. Passioura, J. B. 1982. Water in the soil-plant-atmosphere continuum In: Lange, O.L. P. S. Nobel, C. B. Osmond and H. Ziegler (Eds) Physiological plant ecology II. (Encyclopedia of plant physiology, NS, vol 12B). Springer. Berlin Heidelberg New York. 5–33.
  30. Raskin, K. 1992. Role of salicylic acid in plants. Annual Review Plant physiology and Plant Mol. Biol. 43:439-463.
  31. Razmjoo, K., Heydarizadeh, P., Sabzalian, M.R. 2008. Effect of salinity and drought stresses on growth and essential oil content of (Matricaria chamomile). Int. J. Agric. Biol. 10:451–454.
  32. Riaz, A., Younis, A., Riaz taj, A., Karim, A., Munir, S. Riaz, S. 2013. Effect of drought stress on growth and flowering of Marigold (Tagetes erecta L.). Pak. J. Bot. 45:123-131.
  33. Sankar, B., Abdul Jaleel, C., Manivannan, P., Kishorekumar, A., Somasundaram, R., Panneerselvam, R. 2008. Relative efficacy of water use in five varieties of Abelmoschus esculentus (L.) Moench under water-limited conditions. Colloids and Surfaces B: Biointerfaces. 62:125-129.
  34. Senaratna T., Touchell, D., Bunn, E., Dixon, K. 2000. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul. 30:157-161.
  35. Shakirova, F.M., Sakhabutdinova, A.R., Bezrukova M.V. Fatkhutdinova R.A., Fatkhutdinova, D.R. 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity, Plant Sci. 164:317-322.
  36. Shams, J., N. Etemadi, A. Rezaei and P. Najafi. 2011. Investigation of drought stress on morphological traits of petunia (Petunia hybrida). Crop Sci. 58:140-145.
  37. Sharma, A., Shahzad, B., Kumar, V., Kohli, S.k., Singh Sidhu, G., Bali, A.s., Handa, N., Kapoor, D., Bhardwaj,R. and Zheng, B. 2019. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules: 9 (7), 285.
  38. Stanhill, G. 1986. Water use efficiency. Adv. in Agron. 39: 53-85.
  39. Tan, Y., Zongsuo, L., Shao, H.B., Du, F. 2006. Effect of water deficits on the activity of anti-oxidative enzymes and osmoregulation among three different genotypes of Radix astragali at seeding stage. Colloids Surf. B Biointerfaces. 49: 60-65.
  40. Udayakumar, M., Devendra, R., Ramaswamy, G.S., Nageswara Rao, R.C.A., Roystephen, G.C., Gangadhara, A.I., Hussain, S. 1998. Measurement of transpiration efficiency under field conditions in grain legume crops, Plant Physiol. Biochem. 25: 67–75.
  41. Yazdanpanah, S., Baghizadeh, A., Abbassi, F. 2011. The interaction between drought stress and salicylic and ascorbic acids on some biochemical characteristics of Satureja hortensis. Afr. J. Agri Res. 6:798- 803.