Evaluation of the Effect of Water Deficit Stress on Wheat Yield in a Moderate-Textured Soil in Khuzestan Province

Authors

1 Soil and Water Research Department, Khuzestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran.

2 Soil and Water Research Department, Khuzestan Agricultural and Natural Resources Research and Education Center, AREEO, Ahvaz Iran

Abstract

Irrigation water scarcity is one of the major limiting factors in agricultural production. This study was conducted to investigate the effect of different intensities of water deficit stress on yield and water use efficiency of Chamran 2 wheat cultivar in a moderate-textured soil in Khuzestan province. In this research, 10 treatments including full irrigation and water deficit stress at three intensity levels (low, moderate, and severe) were applied under two conditions: during whole growing season or at a given stage of plant growth. This research was done as a completely randomized design with three replications. The salinity of studied soil was 2.95 dS m-1, and soil texture was silty clay loam. The mean water use in different stress treatments was less than full irrigation by 17% (moderate-intensity stress in the third growth stage of wheat) to 43% (high-intensity stress throughout the plant growth period). Applying different intensities of water stress caused reduction in wheat grain yield by 13% (low-intensity stress throughout the growth period) to 76% (high-intensity stress throughout the growth period). The results showed that water stress at stem elongation and grain filling stages of wheat reduced the grain yield more than stress at flowering and milk stages. The lowest value of mean thousand kernel weight (28 g) was observed in the treatments applied in the final growth stage of wheat, confirming the importance of irrigation effects during grain filling stage on the quality of grain. The overall water use efficiency in low-intensity water stress (0.78 g L-1) was higher than the full irrigation treatment (0.62 g L-1), probably due to the reduction of irrigation water losses by drainage and evaporation.

Keywords


  1. ابراهیمی­پاک، ن.ع. 1391. تعیین ضریب واکنش عملکرد گندم به کم­آبیاری در مراحل مختلف رشد. مجله تولید و فرآوری محصولات زراعی و باغی. 2(5): 122- 129.
  2. امداد، م.ر.، تافته، ا. و غالبی، س. 1397. اعتبارسنجی مدل آکوکراپ در شبیه­سازی عملکرد گندم متأثر از تعداد نوبت­های آبیاری. نشریه آب و خاک (علوم و صنایع کشاورزی). جلد (32): 473-463.
  3. اندرزیان، ب. 1391. واسنجی و ارزیابی نرم افزار جدید (AquaCrop model) FAO، برای مدیریت کم­آبیاری در گندم تحت شرایط خشکی و خشکسالی در خوزستان. گزراش نهایی طرح تحقیقاتی. موسسه تحقیقات اصلاح و تهیه نهال و بذر. 38 صفحه.
  4. دهقان­زاده، ح. 1395. تأثیر رژیم­های آبیاری بر برخی ویژگی­های کمی و کیفی سه رقم گندم در اصفهان. مجله اکوفیزیولوژی گیاهی. 8(24): 25- 34.
  5. شهبازپناهی، ب.، پاک­نژاد، ف. حبیبی، د.، صادقی­شعاع، م.، نصری، م. و پازکی، ع. 1391. بررسی تأثیر رژیم­های آبیاری بر عملکرد و اجزای عملکرد در ارقام مختلف گندم (Triticum aestivum L.). مجله زراعت و اصلاح نباتات. 8 (2): 185 -197.
  6. غازان شاهی، ج. 1385. آنالیز خاک و گیاه. انتشارات آییژ، 296 صفحه.
  7. کیخایی، ف. و گنجی خرم دل، ن. 1395. تأثیر کم­آبیاری با دو روش نواری و شیاری بر عملکرد . کارایی مصرف آب گندم هامون. نشریه پژوهش آب در کشاورزی. 30 (1): 1-11.
  8. گوشه، م. 1386. تقویم آبیاری جهت تعیین آب مصرفی گندم و کنترل شوری در یک خاک شور ایستگاه تحقیقات کشاورزی اهواز. گزارش نهایی پروژه تحقیقاتی. موسسه تحقیقات خاک و آب.
  9. نمروری، م. فتحی، ق. بخشنده، ع. قرینه، م. ح.، جعفری، س. 1391. برهمکنش تنش خشکی انتهای فصل و مصرف کودهای آلی بر عملکرد گندم نان (Triticum aestivum). مجله تولید و فرآوری محصولات زراعی و باغی، 5: 163-173.
  10. وزیری، ژ.، سلامت، ع.، انتصاری، م. ر.، مسچی، م.، حیدری، ن. و دهقانی­سنیچ، ح. 1387. تبخیر- تعرق گیاهان (دستورالعمل محاسبه آب مورد نیاز گیاهان). کمیته ملی آبیاری و زهکشی ایران. 355 صفحه.
    1. Ahmad, F.E., and Suliman, A.S.H. 2010. Effect of water stress applied at different stages of growth on seed yield and water-use efficiency of Cowpea. Agriculture and Biology Journal of North America, 1(4): 534-540.
    2. Basinger, A.R., and Hellman, E.W. 2006. Evaluation of regulated deficit irrigation on grape in Texas and implications for acclimation and cold hardiness. International Journal of Fruit Science, 6(2): 3-22.
    3. Dane, J.H. and Hopmans, J.W. 2002. Pressure cell. In Dane, J.H. and Topp, G.C. (ed.), Methods of Soil Analysis. Part 4: Physical Methods. SSSA Book Series, Soil Science Society of America, Inc, Madison, WI. pp. 684–688.
    4. Dehghanisanji, H., Nakhjavani, M.M., Zeggaf Tahiri, A. and Anyoji, H. 2009. Assessment of wheat and maize water productivities and production function for cropping system decisions in arid and semiarid regions. Irrigation and Drainage, 58: 105-115.
    5. Dong, B., Shi, L., Shi, C., Qiao, Y., Liu, M. and Zhang, Z. 2011. Grain yield and water use efficiency of two types of winter wheat cultivars under different water regimes. Agricultural Water Management, 99: 103–110.
    6. Fereres, E. and Soriano, M.A. 2007. Deficit irrigation for reducing agricultural water use. Special issue on integrated approaches to sustain and improve plant production under drought stress. Journal of Experimental Botany, 58: 147–159.
    7. Galavi, M. and Moghaddam, H.A. 2012. Influence of deficit irrigation during growth stages on water use efficiency (wue) and production of wheat cultivers under field conditions. International Research Journal of Basic Applied Science, 3(10): 2071-2078.
    8. Gee, G.W. and Or, D. 2002. Particle-size analysis. In Dane, J.H. and Topp, G.C. (eds.), Methods of Soil Analysis. Part 4: Physical Methods. SSSA Book Series, Soil Science Society of America, Inc, Madison, WI. pp. 255- 293.
    9. Grossman, R.B. and Reinsch, T.G. 2002. Bulk density and linear extensibility. In Dane, J.H., and Clake, G.C. (eds.). Methods of soil analysis. Part 4: Physical Methods. SSSA Book Series, Soil Science Society of America, Inc, Madison, WI. pp: 201- 228.
    10. Huang, M., Gallichand, J. and Zhong, L. 2004. Water–yield relationships and optimal water management for winter wheat in the Loess Plateau of China. Irrigation Science, 23: 47–54.
    11. Kang, S., Zhang, F. and Zhang, J. 2002. A simulation model of water dynamics in winter wheat field and its application in a semiarid region. Agricultural Water Management, 49: 115-129.
    12. Liu, H., Li, F. and Xu, H. 2004. Deficiency of water can enhance root respiration rate of drought sensitive but not drought-tolerant spring wheat. Agricultural Water Management, 64, 41-48.
    13. Richards, L.A. 1954. Diagnosis and Improvement of Saline and Sodic Soils. USDA Agriculture Handbook 60. USDA, Washington, DC.
    14. Robertson, M.J. and Guinta, F. 1999. Responses of spring wheat exposed to preanthesis water stress. Australian Journal of Agricultural Research, 45: 19-35.
    15. Saini, H.S., Westgate, M.E. 1999. Reproductive development in grain crops during drought. Advances in Agronomy, 68: 59–96.
    16. Seckler, D., Upali, A., Molden, D., de Silva, R., Barker, R. 1998. World Water Demand and Supply, 1990 to 2025: Scenarios and Issues. Research Report 19. International Water Management Institute: Colombo, Sri Lanka, 40 pp.
    17. Singh, S.D. 1981. Moisture–sensitive growth stages of dwarf wheat and optimal sequencing of evapotrnspiration deficits. Agronomy Journal, 73: 387-391.
    18. Tari, A.F. 2016. The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions. Agricultural Water Management, 167: 1-10.
    19. Van Genuchten, M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44: 892-898.
    20. White, E.M., Wilson, F.E.A. 2006. Responses of grain yield, biomass and harvest index and their rates of genetic progress to nitrogen availability in ten winter wheat varieties. Irish Journal of Agricultural Research, 45: 85–101.
    21. Wu, Y., Huang, M. and Gallichand, J. 2011. Transpirational response to water availability for winter wheat as affected by soil textures. Agricultural Water Management, 98: 569–576.
    22. Xue, Q.W., Zhu, Z.X., Musick, J.T., Stewart, B.A. and Dusek, D.A. 2006. Physiological mechanisms contributing to the increased water-use efficiency in winter wheat under deficit irrigation. Journal of Plant Physiology, 163: 154–164.
    23. Yazar, A., Gokcel, F., and Sezen, M.S. 2009. Corn yield response to partial root zone drying and deficit irrigation strategies applied with drip system. Plant and Soil Environment,55(11): 494–503.
    24. Zhang, B., Li, F., Huang, G., Cheng, Z., Zhang, Y. 2006. Yield performance of spring wheat improved by regulated deficit irrigation in an arid area. Agricultural Water Management, 79: 28–42.
    25. Zhang, H. and Oweis, T. 1999. Water yield relations and optimal scheduling of wheat in Mediterranean's region, Agricultural Water Management, 38 (3), 195-211.