Development of Drought Risk Analysis Model in Agricultural Water Supply Systems of Northern Roodasht Irrigation Network Using Bayesian Network

Authors

1 Department of Irrigation and Drainage Engineering, Aburaihan Campus, University of Tehran, Tehran, Iran

2 Associate Professor, Department of Irrigation Engineering, Aburaihan Campus, University of Tehran.

3 Associate Professor, Department of Irrigation Engineering, College of Aburaihan, University of Tehran

Abstract

Agriculture is one of the most important economic sectors of Iran and the largest consumer of surface and underground water resources. Since various risks threaten agricultural water supply systems, developing a risk analysis framework is inevitable in order to identify and assess the impact of the aforementioned systems on promoting sustainable agricultural development. Therefore, for the first time, the present study has attempted to develop a drought risk analysis model for agricultural water supply system with the Bayesian network. The structure of this model, which consists of nodes and their interactions, is designed by using river discharge, water released from the upstream water diversion system, groundwater and irrigation network demand to provide system risk. In order to investigate the capability of the developed model, the risk analysis of the modern Roodasht Irrigation System in Isfahan was investigated. The risk values of the Roodasht agricultural water supply system were estimated in the range of zero to 58.11% and an average of 39.82%. The results showed that this model has good accuracy and performance in both training and test sections, with the root mean squares error of 0.09 and 0.1, coefficient of determination of 0.85 and 0.75, and overall index of model performance of 0.82 and 0.74. The results of this research and the proposed model helps operators and decision makers to better plan the allocation of irrigation water based on the risks predicted in hydrological drought conditions.

Keywords


  1. عباسی، ف.، سهراب، ف.، عباسی، ن. (1395). "ارزیابی وضعیت راندمان آب آبیاری در ایران." تحقیقات مهندسی سازه­های آبیاری و زهکشی، 17(67)، 87-74.
  2. کاردان مقدم, ح. و روزبهانی, ع. (1394). "ارزیابی مدل شبکه‏های بیزین در پیش‏بینی ماهانه سطح آب زیرزمینی (مطالعۀ موردی: آبخوان بیرجند)." مدیریت آب و آبیاری, 5(2), 139-151.
  3. هاشمی شاهدانی، س. م. (1395) "بررسی میزان مطلوبیت بهره­برداری کانال­های اصلی آبیاری از نقطه نظر توزیع عادلانه آب در شرایط کم­آبی در سامانه کنترل بالادست و کنترل پایین دست (مطالعه موردی ، کانال اصلی شاخه شمالی شبکه آبیاری رودشت )" وزارت نیرو، شرکت مدیریت منابع آب ایران، شرکت آب منطقه­ای اصفهان، گروه تحقیقات کاربردی.
  4. Anbari, M. J., Tabesh, M., and Roozbahani, A. (2017). “Risk assessment model to prioritize sewer pipes inspection in wastewater collection networks.” Journal ofEnvironmental Management, 190, 91-101.
  5. Babaei, M., Roozbahani, A., and Shahdany, S. M. H. (2018). “Risk Assessment of Agricultural Water Conveyance and Delivery Systems by Fuzzy Fault Tree Analysis Method.” Water Resources Management, 32(12), 4079-4101.
  6. Baker, A. B., Eagan, R. J., Falcone, P. K., Harris, J. M., Herrera, G. V., Hines, W. C., ... and Woodall, T. D. (2002). A scalable systems approach for critical infrastructure security. Sandia National Laboratories.
  7. Bayes, T. (1763). "LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFR S. Philosophical" transactions of the Royal Society of London, (53), 370-418.
  8. Bayram, S., and Al-Jibouri, S. (2016). “Efficacy of estimation methods inforecasting building projects’ costs.” Journal of construction engineering and management, 142(11).
  9. Bergmeir, C., Benitez, J.M., 2012. On the use of cross-validation for time series predictor evaluation. Information Sciences, 191,192–213.
  10. Bergmeir, C., Hyndman, R.J., Koo, B., 2018. A note on the validity of cross-validation for evaluating autoregressive timeseries prediction. Computational Statistics and Data Analysis. 120, 70–83.
  11. Chelle, P., Yeung, C. H., Croteau, S. E., Lissick, J., Balasa, V., Ashburner, C., & Wynn, T. (2020). “Development and Validation of a Population-Pharmacokinetic Model for Rurioctacog Alfa Pegol (Adynovate®): A Report on Behalf of the WAPPS-Hemo Investigators Ad Hoc Subgroup.” Clinical pharmacokinetics, 59(2), 245-256.
  12. Dos Santos, J. P., Fernandes, S. B., McCoy, S., Lozano, R., Brown, P. J., Leakey, A. D., & Gore, M. A. (2020). Novel Bayesian networks for genomic prediction of developmental traits in biomass sorghum. G3: Genes, Genomes, Genetics, 10(2), 769-781.
  13. Fares, H., and Zayed, T. (2010). “Hierarchical fuzzy expert system for risk of failure of water mains.” Journal of Pipeline Systems Engineering and Practice, 1(1), 53-62.
  14. Feng, L. H., and Luo, G. Y. (2011). “Application of possibility-probability distribution in assessing water resource risk in Yiwu city”. Water Resources, 38(3), 409.
  15. Gain, A. K., and Giupponi, C. (2015). “A dynamic assessment of water scarcity risk in the Lower Brahmaputra River Basin: An integrated approach”. Ecological indicators, 48, 120-131.
  16. Haro-Monteagudo, D., Knox, J. W., and Holman, I. P. (2019). “D-Risk: A decision-support webtool for improving drought risk management in irrigated agriculture.” Computers and Electronics in Agriculture, 162, 855-858.
  17. Hashimoto, T., Stedinger, J. R., and Loucks, D. P. (1982). “Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation.” Water resources research, 18(1), 14-20.
  18. Kaplan, S., and Garrick, B.J. (1981). “On the quantitative definition of risk.” Risk Analysis, 1(1): 11–27.
  19. Karamouz, M., Saadati, S., and Ahmadi, A. (2010). “Vulnerability assessment and risk reduction of water supply systems.” In World Environmental and Water Resources Congress 2010: Challenges of Change, 4414-4426.
  20. Lee, M., McBean, E. A., Ghazali, M., Schuster, C. J., and Huang, J. J. (2009). “Fuzzy-logic modeling of risk assessment for a small drinking-water supply system.” Journal of Water Resources Planning and Management, 135(6), 547-552.
  21. Li, M., Guo, P., Singh, V. P., and Yang, G. (2016). “An uncertainty-based framework for agricultural water-land resources allocation and risk evaluation.” Agricultural Water Management, 177, 10-23.
  22. Liu, B., Siu, Y. L., and Mitchell, G. (2017). “A quantitative model for estimating risk from multiple interacting natural hazards: an application to northeast Zhejiang, China”. Stochastic Environmental Research and Risk Assessment, 31(6), 1319-1340.
  23. McKee, T. B., Doesken, N. J., & Kleist, J. (1993, January). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183).
  24. Nalbantis, I., and Tsakiris, G. (2009). “Assessment of hydrological drought revisited.” Water Resources Management, 23(5), 881-897.
  25. Nielsen, T. D., and Jensen, F. V. (2009). “Bayesian networks and decision graphs.” Springer Science and Business Media.
  26. Nieto-Morote, A., and Ruz-Vila, F. (2011). “A fuzzy approach to construction project risk assessment.” International Journal of Project Management, 29(2), 220-231.
  27. Orojloo, M., Shahdany, S. M. H., and Roozbahani, A. (2018). “Developing an integrated risk management framework for agricultural water conveyance and distribution systems within fuzzy decision making approaches.” Science of the Total Environment, 627, 1363-1376.
  28. Rodriguez, J. D., Perez, A., and Lozano, J. A. (2009). “Sensitivity analysis of k-fold cross validation in prediction error estimation.” IEEE transactions on pattern analysis and machine intelligence, 32(3), 569-575.
  29. Roozbahani, A., Zahraie, B., and Tabesh, M. (2012). PROMETHEE with precedence order in the criteria (PPOC) as a new group decision making aid: an application in urban water supply management. Water resources management, 26(12), 3581-3599.
  30. Roozbahani, A., Zahraie, B., and Tabesh, M. (2013). “Integrated risk assessment of urban water supply systems from source to tap.” Stochastic environmental research and risk assessment, 27(4), 923-944.
  31. Sadiq, R., Kleiner, Y. and Rajani, B. (2004) “Aggregative risk analysis forwater quality failure in distribution networks.” Journal of Water SupplyRes Technol. 53(4):241–261.
  32. Sarzaeim, P., Bozorg-Haddad, O., Bozorgi, A., and Loáiciga, H. A. (2017). “Runoff projection under climate change conditions with data-mining methods.” Journal of Irrigation and Drainage Engineering, 143(8), 04017026.
  33. Shukla, S., and Wood, A. W. (2008). “Use of a standardized runoff index for characterizing hydrologic drought.” Geophysical research letters, 35(2).
  34. Sun, Z., Zhang, J., Yan, D., Wu, L., and Guo, E. (2015). “The impact of irrigation water supply rate on agricultural drought disaster risk: a case about maize based on EPIC in Baicheng City, China.” Natural Hazards, 78(1), 23-40.
  35. Thall, P., Russel, K. and Simon, R., (1997). “Variable selection in regression via repeated data splitting.”Journal of Computational and Graphical Statistics, 6 (4), 416–434.
  36. Torres, J. M., Brumbelow, K., and Guikema, S. D. (2009). “Risk classification and uncertainty propagation for virtual water distribution systems.” Reliability Engineering and System Safety, 94(8), 1259-1273.
  37. Tsakiris, G., and Vangelis, H. J. E. W. (2005). “Establishing a drought index incorporating evapotranspiration.” European water, 9(10), 3-11.
  38. Wong, T. T. (2015). “Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation.” Pattern Recognition, 48(9), 2839-2846.
  39. Zamani, R., Akhond-Ali, A. M., Roozbahani, A., and Fattahi, R. (2017). “Risk assessment of agricultural water requirement based on a multi-model ensemble framework, southwest of Iran.” Theoretical and Applied Climatology, 129(3-4), 1109-1121.
  40. Zhang, X., Xu, K., and Zhang, D. (2012). “Risk assessment of water resources utilization in Songliao Basin of Northeast China”. Environmental earth sciences, 67(5), 1319-1329.