Document Type : Research Paper

Authors

1 Assistant Professor, National Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran

2 Assistant Professor, Department of Horticultural Science, Faculty of Agriculture & Natural Resources, Ardakan University, Ardakan, Iran.

3 MSc student, Department of Horticultural Science, Faculty of Agriculture & Natural Resources, Ardakan University, Ardakan, Iran

Abstract

In order to determine salinity tolerance threshold and yield decrease per unit increase of soil salinity in selected pomegranate genotypes, a factorial experiment was carried out based on completely randomized design (CRD), with two factors: genotypes in 12 types (Shisheh Kap Ferdus, Malas Yazdi, Malas Saveh, Rabab Neyriz, Golnar Saveh, Golnar Sarvestan, Golnar Shahdad, Narak Lasjerd Semnan, Vahshi Babolsar, Post Siyah Ardakan, Chah Afzal and Voshik Torsh Saravan) and soil salinity at five levels (1.5, 3.8, 6.2, 9.3 and 12.6 dSm-1). According to the results, the lowest salinity tolerance threshold was observed in Voshik Torsh Saravan (3.02 dS/m), Malas Saveh (3.25 dS/m) and Golnar Saveh (3.40 dS/m) genotypes, and the highest salinity tolerance threshold was observed in Golnar Shahdad (4.90 dS/m), Chah Afzal (4.70 dS/m), Post Siyah Ardakan (4.38 dS/m), and Malas Yazdi (4.17 dS/m) genotypes. The highest yield reduction slope was observed in Golnar Saveh (7.89%), Golnar Sarvestan (7.39%), Voshik Torsh Saravan (6.69%), and Malas Saveh (6.33%) genotypes, respectively. In contrast, the lowest yield reduction slope was observed in Chah Afzal (2.83%), Post Siyah Ardakan (2.88%) and Narak Lasjerd Semnan (2.89%) genotypes, respectively. Overall, the results showed the levels of salinity that reduced the yield by 50% in Chah Afzal, Post Siyah Ardakan and Narak Lasjerd Semnan genotypes were about twice greater than salinity that reduced the yield by 50% in Golnar Saveh, Golnar Sarvestan, Voshik Torsh Saravan and Malas Saveh genotypes. EC50 in Chah Afzal, Post Siyah Ardakan, and Narak Lasjerd Semnan genotypes were observed at 22.37, 21.74 and 21.10 dS/m. At salinity level of 8.4 dS/m, yield reductions in Chah Afzal, Post Siyah Ardakan and Narak Lasjerd Semnan genotypes were only 10.47%, 11.58%, and 13.30%, respectively, which were lower than the 50% value previously reported. Therefore, these three genotypes were selected for further studies and planting as rootstocks in Chah Afzal Station of National Salinity Research Center.

Keywords

  1. احمدی، ف.، ع.، مومن پور، م.، دهستانی اردکانی، و ج. غلام نژاد (1398). پاسخ برخی از ژنوتیب­های انتخابی انار (Punica granatum) به شوری آب آبیاری. مجله به زراعی کشاورزی. 21 (3): 411-400.
  2. حیدری شریف آباد، ح. 1380. گیاه و شوری. موسسه تحقیقات جنگل­ها و مراتع. 76 صفحه.
  3. مومن پور، ع.، ع. ایمانی، د. بخشی، و غ. ح. رنجبر. 1397. تعیین آستانه تحمل به شوری 11 رقم و ژنوتیپ انتخابی بادام. مجله پژوهش آب در کشاورزی. 32 (4): 529-541.
  4. مومن پور، ع.، ع. ایمانی، د. بخشی، و ح. رضایی.  1393. ارزیابی تحمل به شوری در برخی از ژنوتیپ­های بادام پیوند شده روی پایه GF677 بر اساس صفات مورفولوژیک و فلورسانس  کلروفیل. فرآیند و کارکرد گیاهی. 3 (10): 9-28.
  5. ولی‌پور، م.، م. کریمیان اقبال، م. ج. ملکوتی، و ا. ح. خوشگفتارمنش. 1387. روند توسعه شوری و تخریب اراضی ‏کشاورزی در منطقه شمس‌آباد استان قم. علوم و فنون کشاورزی و منابع طبیعی، 12 (46): 691-683.‏
  6. Fipps, G. 2003. Irrigation water quality standards and salinity management strategies. Texas Agricultural Extension Service. Pp 1-18.
  7. Fowler, D. B., and J. W. Hamm. 1980. Crop response to saline sodic conditions in parkland area of Saskatchewan. Can. J. Soil Sci. 60:439-449
  8. Grattan, S. R. 2002. Irrigation water salinity and crop production. University of California. Agriculture and Natural Recourses Publication. 8066
  9. Ibrahim, H.I.M. 2016. Tolerance of two pomegranates cultivars (Punica granatum L.) to salinity stress under hydroponic culture conditions. Journal of Basic and Applied Scientific Research. 6 (4): 38-46.
  10. Karimi, H.R., and Hasanpour, Z. 2014. Effects of salinity and water stress on growth and macro nutrients concentration of pomegranate (Punica granatum L.). Journal of Plant Nutrition. 37:1937-1951.
  11. Liu, C., Ming, Y., Xianbin, H., and Zhaohe, Y. 2018. Effects of salt stress on growth and physiological characteristics of pomegranate (Punica granatum L.) cuttings. Pakistan Journal of Botany. 50 (2): 457-464.
  12. Maas, E. V. 1990. Crop salt tolerance. pp. 262-303. In:K.K. Tanji (ed.) Agricultural Salinity Assessment and Management. ASCE. Publication. 619 pp.
  13. Maas, E. V. 1996. Plant response to soil salinity. 4th National Conference and Workshop on the “Production Use and Rehabilitation of Saline Lands". Albany Western Australia. 25-30 March.
  14. Maas, E.V, and G.J, Hoffman. 1977. Crop salt tolerance: current assessment. Journal of Irrigation and Drainage Engineering. 103: 115- 134.
  15. Maas, E.V. and S.R. Grattan. 1999.  Crop yield as affected by salinity. Agric. Drain. Agron. Monograph. 38: 55-107.
  16. Mastrogiannidou, E., Chatzissavvidis, C., Antonopoulou, C., Tsabardoukas, V., Giannakoula, A., and Therios, I. 2016. Response of pomegranate cv. wonderful plants tο salinity. Journal of Soil Science and Plant Nutrition. 16 (3): 621-636.
  17. Momenpour, A., and Imani, A. 2018. Evaluation of salinity tolerance in fourteen selected pistachio (Pistacia vera L.) cultivars. Advances in Horticultural Science. 32 (2): 249-264.
  18. Momenpour, A., Imani, A., Bakhshi, D., and Akbarpour, E. 2018. Evaluation of salinity tolerance of some selected almond genotypes budded on GF677 rootstock. International Journal of Fruit Science. 18 (4): 410-435. 
  19. Munns, R. 2002. Comparative physiology of salt and water stress. Plant, Cell and Environment. 25: 239-250.
  20. Munns, R., and M. Tester. 2008 Mechanisms of salinity tolerance.Annual Review of Plant Biology. 59: 651–681.
  21. Okhovatian-Ardakani, A.R., Mehrabanian, M., Dehghani, F., and Akbarzadeh, A. 2010. Salt tolerance evaluation and relative comparison in cuttings of different pomegranate cultivars. Plant, Soil and Environment. 56 (4): 176-185.
  22. Szczerba, M.W., D. T. Britto, and H. J. Kronzucker. 2009. K+ transport in plants: physiology and molecular biology. Plant Physiology. 166: 447-466.
  23. Szczerba, M.W., DT. Britto, KD. Balkos., and H. J. Kronzucker. 2008. NH4+ stimulated and -inhibited components of K+ transport in rice (Oryza sativa L.). Experimental Botany. 59: 3415–3423.
  24. Van Genuchtan, M. Th. and G. J. Hoffman. 1984. Analysis of crop salt tolerance data. Soil Salinity under Irrigation- process and management. Ecological Studies 51, Springer-Verlag, N. Y. pp. 258-271.