نوع مقاله : مقاله پژوهشی

نویسندگان

1 آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، کرج، ایران

2 دانشیار، گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران.

چکیده

به منظور بررسی تأثیر شوری آب آبیاری بر برخی ویژگی­های شیمیایی و توزیع نمک در نیمرخ خاک تحت کشت سه رقم ذرت در شرایط استفاده از سیستم آبیاری قطره­ای (نوارهای تیپ)، پژوهشی در سال 1396 در مزرعه پژوهشی گروه مهندسی آبیاری و آبادانی دانشگاه تهران، واقع در کرج به صورت آزمایش فاکتوریل و در قالب طرح بلوک­های کامل تصادفی انجام گرفت. تیمارهای آزمایشی شامل سه هیبرید ذرت، سینگل­کراس­های 260، 400 و 704 (V1، V2 و V3) و سه سطح شوری آب آبیاری 7/0، 3 و 5 dS/m (S1، S2 و S3) بودند.ECe ، pHو کاتیون­هایسدیم، پتاسیم و کلسیم + منیزیمبرای تعیین نیمرخ شوری در خاک، در طول دوره رشد گیاه و در لایه­های 20-0، 40-20 و 60-40 سانتی­متری خاک و به فواصل 10 و 20 سانتی­متری از خطوط آبیاری اندازه­گیری شدند.نتایج شوری عصاره اشباع خاک (ECe) و مقدار سدیم اندازه­گیری شده در دو لایه 20-0 و 40-20 سانتی­متری، نشان داد که شوری و سدیم خاک تحت تأثیر سطوح مختلف شوری آب آبیاری و عمق خاک اختلاف معنی­داری داشتند. میزان شوری و سدیم خاک رابطه مستقیم با شوری آب آبیاری و طول دوره رشد ارقام ذرت و رابطه عکس با عمق خاک داشت. به طوریکه بالاترین میزان شوری (4/13 dS/m) و سدیم خاک (6/95 meq/L) در لایه 20-0 سانتی­متری تیمار V3S3 و کمترین میزان آن (4/2 dS/m و 5 meq/L) در لایه 40-20 سانتی­متری تیمار V2S1 مشاهده شد.همچنین با توجه به وضعیت ارقام ذرت بدون توجه به تیمار شوری مشاهده شد که بین سه هیبرید اختلاف معنی­دار وجود نداشت و پتانسیل جذب نمک در هر سه رقم یکسان بود.در آبیاری­های با آب شور (دو سطح شوری آب آبیاری 3 و 5 dS/m)، جبهۀ رطوبتی کمتر به سمت خارج از خط آبیاری حرکت کرده و اغلب تجمع نمک در فاصله 10 سانتی­متری از خط آبیاری و سطح خاک به دلیل مصرف گیاه و تبخیر-تعرق مشاهده شد. بر اساس نتایج بدست آمده از این پژوهش، در شرایط استفاده از آب شور برای آبیاری محصولات کشاورزی با استفاده از سیستم آبیاری قطره­ای، در آخر فصل رشد یا زمستان نیاز به یک آبشویی است تا نمک­های جمع­شده در لایه سطحی خاک را از ریشه گاه خارج ساخت.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of Drip Tape Irrigation with Saline Water on Some Chemical Properties of Soil

نویسندگان [English]

  • morteza khoshsima 1
  • Hamideh Noori 2

1 Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering & Technology, university of tehran, karaj, iram\n

چکیده [English]

 
In order to study the effect of irrigation water salinity on some chemical parameters and distribution of salt in soil profiles under drip irrigation system (T-tape), a factorial experiment with Randomized Complete Block Design (RCBD) was carried out in the research farm of the department of irrigation and reclamation engineering, University of Tehran, Karaj, Iran, during June to October 2017. The treatments consisted of three maize hybrids SC 260, SC 400, and SC 704 (V1, V2 and V3) and three levels of irrigation water salinity of 0.7, 3, and 5 dS/m (S1, S2 and S3). To study the salinity profile in the soil during the plant growth period, ECe, pH, Na+, K+ and (Ca2++Mg2+) cations were determined in 0-20, 20-40 and 40-60 cm soil layers and at a distance of 10 and 20 cm from irrigation lines. The result of variance and comparison of the mean measured properties at 0-20 and 20-40 cm soil layers, (ECe and Na+) showed that there was a significant difference between soil salinity (ECe) and sodium (Na+) under different levels of water salinity and depth of soil. The soil salinity and sodium content were directly correlated with irrigation water salinity and growth period of maize hybrids, and had an inverse relationship with soil depth. Indeed, the highest amount of soil salinity (13.4 dS/m) and soil sodium (95.6 meq/L) in the 0-20 cm layer was in V3S3 and the lowest (2.4 dS/m and 5 meq/L) was observed in the 20-40 cm layer of V2S1. Also, regardless of salinity treatments, there was no significant difference between the three hybrids and the salt absorption potential was the same for all tree hybrids. In saline irrigation treatments (i.e. 3 and 5 dS/m), the wetting front moved less away from the irrigation line, and most salt accumulation was observed at a distance of 10 cm from irrigation line and soil surface due to plant consumption and evapotranspiration. According to the results of this study, in the conditions of using saline water for irrigation of crops using a drip irrigation system, at the end of the growing season or in the next winter, leaching is needed to remove salts in the soil surface layer from the root zone of the next crop.
                                                                                                           

کلیدواژه‌ها [English]

  • Leaching
  • Salt distributions profile
  • Soil-Water-Plant Relationships
  • Irrigation water salinity
  1. چوگان، ر. 1391. ذرت و ویژگی­های آن. سازمان تحقیقات، آموزش و ترویج کشاورزی، نشر آموزش کشاورزی. 466 صفحه.
  2. حسن­لی، م. 1392. مدیریت استفاده از آب شور در آبیاری قطره­ای در جهت افزایش کارآیی مصرف آب و پایداری اراضی. پایان­نامه کارشناسی ارشد گروه مهندسی آبیاری و آبادانی دانشکده مهندسی و فناوری کشاورزی پردیس کشاورزی و منابع طبیعی دانشگاه تهران 86 صفحه.
  3. طاهری، م.، طاهری، م.، عباسی، م.، مصطفوی، ک. و واحدی، س. 1395. بررسی الگوی توزیع شوری و سدیم خاک تحت آبیاری قطره­ای سطحی و زیر سطحی در باغات زیتون. فصلنامه علمی پژوهشی مهندسی آبیاری و آب، 7(26): 141-127.
  4. عباس­زاده، ف. و رضایی­سوخت­آبندانی، ر. 1391. تأثیر سطوح مختلف تنش شوری بر غلظت کاتیون­ها و آنیون­ها در ژنوتیپ­های مختلف کلزا. فصلنامه علمی پژوهشی فیزیولوژی گیاهان زراعی دانشگاه آزاد اسلامی واحد اهواز. 4(16): 108-95.
  5. علیزاده، ا. 1392. فیزیک خاک (چاپ ششم). انتشارات آستان قدس رضوی. مشهد.
  6. کرمی، م. و فراستی، م. 1393. بررسی توزیع نمک تحت دو منبع نقطه­ای و حبابی آبیاری قطره­ای. نشریه مهندسی آبیاری و آب ایران، 5(18): 68-56.
  7. بی­نام، 1387. دستورالعمل تجزیه­های آزمایشگاهی نمونه­های خاک و آب (نشریه شماره 467). معاونت برنامه­ریزی و نظارت راهبردی رئیس جمهور. 255 صفحه.
  8. نجفی، ن. ا. 1394. اثر شور و غرقاب شدن خاک بر غلظت برخی عناصر پرمصرف و سدیم در ریشه ذرت. نشریه علمی – پژوهشی اکوفیزیولوژی گیاهان زراعی، 9(33): 41-20.
    1. Abel, G. H. and Mackenzie, A.J. (1964). Salt tolerance of soybean varieties (Glycine max L.) during germination and later growth. Crop Sciences, 4, 157-161.
    2. Ali, M.H. and Talukder, M.S.U. (2008). Increasing water productivity in crop production-A synthesis, Agricultural Water Management, 95, 1201-1213.
    3. Allen, R.G., Pereira, L.S., Raes, D., Smith, M. (1998). Crop evapotranspiration. Guidelines for computing crop water requirements. In: Irrigation and Drainage Paper56. FAO, Rome, Italy, pp. 300.
    4. Al-Omran, A. M. (2010). Effect of saline water and drip irrigation on tomato yield in sandy calcareous soils amended with natural conditioners. In 2nd International Salinity Forum Salinity, Water and Society–Global Issues, Local Action.–2010.
    5. Amer, K. H. (2010). Corn crop response under managing different irrigation and salinity levels. Agricultural Water Management, 97(10), 1553–1563.
    6. Ayers, R. S., and Westcot, D. W. (1985). Water quality for agriculture (Vol. 29). Rome: Food and Agriculture Organization of the United Nations.
    7. Burt, C. M., and Isbell, B. (2005). Leaching of accumulated soil salinity under drip irrigation. Transactions of the ASAE48(6), 2115-2121.
    8. Burt, C., Othman, A.A. and Paolini, A. (2003). Salinity patterns on row crops under Subsurface Drip Irrigation (SDI) on the Westside of the San Joaquin Valley of California, irrigation training and research center (ITRC), 64 pp.
    9. Bybordi, A. (2010). Effects of Salinity on Yield and Component Characters in Canola (Brassica napus L.) Cultivars. Notulae Scientia Biologicae, 2 (1), 81-83.
    10. Chauhan, C. P. S., Singh, R. B., & Gupta, S. K. (2008). Supplemental irrigation of wheat with saline water. Agricultural Water Management, 95(3), 253–258.
    11. Chen, M., Kang, Y., Wan, S., & Liu, S. ping. (2009). Drip irrigation with saline water for oleic sunflower (Helianthus annuus L.). Agricultural Water Management, 96(12), 1766–1772.
    12. Choudhary, O. P., Josan, A. S., & Bajwa, M. S. (2001). Yield and fiber quality of cotton cultivars as affected by the build-up of sodium in the soils with sustained sodic irrigations under semi-arid conditions. Agricultural Water Management49(1), 1-9.
    13. Cramer, G. R., Lynch, J., Läuchli, A., & Epstein, E. (1987). Influx of Na+, K+, and Ca2+ into roots of salt-stressed cotton seedlings: effects of supplemental Ca2+. Plant Physiology83(3), 510-516.
    14. Dehghanisanij, H., Agassi, M., Anyoji, H., Yamamoto, T., Inoue, M., & Eneji, A. E. (2006). Improvement of saline water use under a drip irrigation system. Agricultural water management85(3), 233-242.
    15. Díaz, F. J., Grattan, S. R., Reyes, J. A., de la Roza-Delgado, B., Benes, S. E., Jiménez, C., Tejedor, M. (2018). Using saline soil and marginal quality water to produce alfalfa in arid climates. Agricultural Water Management, 199, 11–21.
    16. Feng, G., Zhang, Z., Wan, C., Lu, P., and Bakour, A. (2017). Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system. Agricultural Water Management, 193, 205–213.
    17. Grattan, S.R. and Grieve, C.M. (1999). Mineral nutrient acquisition and response by plants grown in saline environments. Handbook of plant and crop stress, 2, pp. 203-229.
    18. Hanson, B. (2012). Drip irrigation and salinity. Agriculture salinity assessment and management manual and reports on engineering practice 70 (2edn). American Society of Civil Engineers, Reston (Vi), 539-560.
    19. Huang, C. H., Zong, L., Buonanno, M., Xue, X., Wang, T., & Tedeschi, A. (2012). Impact of saline water irrigation on yield and quality of melon (Cucumis melo cv. Huanghemi) in northwest China. European journal of agronomy43, 68-76.
    20. Jiang, J., Huo, Z., Feng, S., & Zhang, C. (2012). Effect of irrigation amount and water salinity on water consumption and water productivity of spring wheat in Northwest China. Field Crops Research, 137, 78–88.
    21. Kamal, H. A., (2010). Corn crop response under managing different irrigation and salinity kevels. Agriculture Water Management, 97, 1553-1563.
    22. Kang, Y., Chen, M., & Wan, S. (2010). Effects of drip irrigation with saline water on waxy maize (Zea mays L. var. ceratina Kulesh) in North China Plain. Agricultural Water Management97(9), 1303-1309.
    23. Lauchli, A. and Epstein, E. (1990). Plant responses to saline and sodic conditions. pp: 113-137. In: K.K. Tanji. Agriculture Salinity Assessment and Management. ASCE. Publication. 619 p.
    24. Li, X., Kang, Y., Wan, S., Chen, X., & Xu, J. (2015). Effect of drip-irrigation with saline water on Chinese rose (Rosa chinensis) during reclamation of very heavy coastal saline soil in a field trial. Scientia Horticulturae186, 163-171.
    25. Machekposhti, M. F., Shahnazari, A., Ahmadi, M. Z., Aghajani, G., & Ritzema, H. (2017). Effect of irrigation with seawater on soil salinity and yield of oleic sunflower. Agricultural Water Management188, 69-78.
    26. Malash, N. M., Ali, F. A., Fatahalla, M. A., A. khatab, E., Hatem, M. K., & Tawfic, S. (2012). Response of tomato to irrigation with saline water applied by different irrigation methods and water management stratigies. International Journal of Plant Production, 2(2), 101–116.
    27. Marandola, D. and Coderoni, S. (2013). Sustainable land use, priority in EU policies. L’Informatore Agrario, 4, 48–51.
    28. Melgar, J. C., Mohamed, Y., Serrano, N., García-Galavís, P. A., Navarro, C., Parra, M. A., ... & Fernández-Escobar, R. (2009). Long term responses of olive trees to salinity. Agricultural Water Management96(7), 1105-1113.
    29. Mostafazadeh-Fard, B., Mansouri, H., Mousavi, S.-F., & Feizi, M. (2009). Effects of Different Levels of Irrigation Water Salinity and Leaching on Yield and Yield Components of Wheat in an Arid Region. Journal of Irrigation and Drainage Engineering, 135(1), 32–38.
    30. Munns, R. (2002). Comparative physiology of salt and water stress. Plant, cell & environment25(2), 239-250.
    31. Murray, R.S. and Grant, C.D. (2007). The impact of irrigation on soil structure. Land and Water Australia, 1-31.
    32. Murtaza, G., Ghafoor, A., Qadir, M. (2006). Irrigation and soil management strategies for using saline-sodic water in a cotton-wheat rotation. Agriculture Water Management, 81, 98-114.
    33. Niu, G., Rodriguez, D. S., & Starman, T. (2010). Response of bedding plants to saline water irrigation. HortScience, 45(4), 628–636.
    34. Rameshwaran, P., Tepe, A., Yazar, A., & Ragab, R. (2016). Effects of drip-irrigation regimes with saline water on pepper productivity and soil salinity under greenhouse conditions. Scientia Horticulturae, 199, 114–123.
    35. Rhoades, J.D. and Loveday, J. (1990). Salinity in irrigated agriculture. In: Steward B.A., Neilsen D.R. (eds): Irrigation of Agricultural Crops. Madison, ASA, CSSA, SSSA, 1089–1142.
    36. Rhoades, J.D. Kandiah, A., Mashali, A.M. (1992). The use of saline water for crop production. In: irrigation and Drainage paper48. FAO.
    37. Sairam, R. K., & Tyagi, A. (2004). Physiological and molecular biology of salinity stress tolerance in deficient and cultivated genotypes of chickpea. Plant Growth Regul57(10).
    38. Shalhevet, J. (1994). Using water of marginal quality for crop production: major issues. Agricultural water management25(3), 233-269.
    39. Shrivastava, P., and Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi journal of biological sciences, 22 (2), 123–131.
    40. Singh, A., & Panda, S. N. (2012). Effect of saline irrigation water on mustard (Brassica juncea) crop yield and soil salinity in a semi-arid area of north India. Experimental Agriculture, 48(1), 99–110.
    41. Smart, RE., and Bingham, GE. (1974). Rapid estimates of relative water content. Plant Physiology 53: 258-260.
    42. Tural, H., Svendsen, M., and Faures, J. M. (2010). Investing in irrigation: Reviewing the past and looking to the future. Agriculture Water Management, 97(4), 551-560.
    43. Wan, S., Jiao, Y., Kang, Y., Hu, W., Jiang, S., Tan, J., & Liu, W. (2012). Drip irrigation of waxy corn (Zea mays L. var. ceratina Kulesh) for production in highly saline conditions. Agricultural Water Management, 104, 210-220.
    44. Wan, S., Kang, Y., Wang, D., & Liu, S. P. (2010). Effect of saline water on cucumber (Cucumis sativus L.) yield and water use under drip irrigation in North China. Agricultural Water Management, 98(1), 105-113.
    45. Wang, X., Yang, J., Liu, G., Yao, R., & Yu, S. (2015). Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution. Agricultural Water Management149, 44-54.
    46. Yazar, A., gençel, B., sezen, M. S., & koç, M. (2003). Sustainable use of highly saline water for irrigation of crops under arid and semi-arid conditions: new strategies. Options méditerranéennes: série b. Etudes et recherches, (44), 123-135.