Effects of Water Quality and Irrigation Management on Growth and Yield of Quinoa

Document Type : Research Paper

Authors

1 PhD student, Department of Water Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

2 Professor, Water Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran.

Abstract

In this study, six irrigation treatments including well water (1.23 dS.m-1; control treatment), saline water (15 dS.m-1), alternate saline water and freshwater, mixture of 50:50 saline and freshwater (7.2 dS.m-1), subsurface irrigation with saline water (15 dS.m-1), and subsurface irrigation with well water (1.23 dS.m-1) were evaluated on some growth parameters, yield, and biochemical characteristics of Quinoa (CV. Titicaca). The research was done based on completely randomized design including 3 replications as pot planting in the Ferdowsi University of Mashhad, in greenhouse conditions, during 2017-2018. The results showed that the effect of different irrigation regimes on total soluble carbohydrate in leaf and stem, root fresh weight, and root length was significant at 1 percent level (P<0.01), while the leaf and stem fresh weight were significant at 5 percent level (P<0.05). Subsurface irrigation with saline water decreased leaf, stem, root fresh weight; grain yield, 1000 kernel weights, total soluble carbohydrate in leaf and stem by about 14%, 12.1%, 47.9%, 6.5%, and 5.6 %, respectively. Also, total soluble carbohydrate in leaf and stem increased by about 55.3% and 70.09 %, respectively. The alternate irrigation treatment decreased leaf, stem, root fresh weight, grain yield, and 1000 kernel weight by 22.8%, 23.7%, 34.1%, 8.1%, and 7.7%, respectively. Irrigation with saline water (15 dS.m-1) during all of the growth stages decreased grain yield and 1000 kernel weights by 20.8% and 20.0 %, respectively. In this research, sub-surface irrigation treatment with freshwater was the optimum treatment with the highest yield. Thus, if saline water is used, alternate irrigation treatment is recommended.

Keywords


  1. آتشی، ص. و ک.، مشایخی. 1395. راهنمای آزمایشات فیزیولوژی گیاهی (بررسی‌های قبل و پس از برداشت گیاهان). تحقیقات آموزش کشاورزی. 318 صفحه.
  2. پوستینی،ک. 1381. ارزیابی30رقم گندم ازنظرواکنش به تنش شوری. مجله علوم کشاورزی ایران. 33: 57-64 ص.
  3. جمالی، ص. 1395. بررسی اثرسطوح مختلف شوری و کم­آبیاری بر عملکرد و اجزای عملکرد گیاه کینوا. پایان­نامه کارشناسی ارشد آبیاری و زهکشی. دانشکده مهندسی آب وخاک. دانشگاه علوم کشاورزی ومنابع طبیعی گرگان.
  4. جمالی، ص.، ح.، شریفان، ا.، هزارجریبی. و ن.ع.، سپهوند. 1395. بررسی تأثیر سطوح مختلف شوری بر جوانه‌زنی و شاخص­های رشد دو رقم گیاه کینوا (Chenopodium quinoa Willd). نشریه علمی پژوهشی حفاظت منابع آب و خاک. 6(1): 87-98.
  5. جمالی، ص.، ح.، شریفان. و ف.، سجادی. 1396. امکان‌سنجی استفاده از آب دریای خزر جهت آبیاری گیاه تره ایرانی. مدیریت آب و آبیاری. 7(1): 29-42.
  6. دانشور، ح.ع. و ب.، کیانی. 1383. بررسی اثر شوری بر چند رقم محلی سنجد (Elaeagnus angustifolia) در استان اصفهان. پژوهش و سازندگی. 65: 76-83.
  7. کافی، م.، ا.، برزویی، م.، صالحی، ا.، کمندی، ع.، معصومی. و ج.، نباتی. 1388.  فیزیولوژی تنش‌های محیطی در گیاهان.انتشارات جهاد دانشگاهی مشهد.
  8. کافی، م.، م.، صالحی. و ح.ر.، عشقی­زاده. 1389. کشاورزی شورزیست. راهبردهای مدیریت گیاه، آب و خاک (تالیف). انتشارات دانشگاه فردوسی مشهد.
  9. نباتی، ج.، م.، کافی، ا.، نظامی، پ.، رضوانی مقدم، ع.، معصومی. و م.، زارع مهرجردی. 1393. اثر زمان اعمال سطوح مختلف تنش شوری بر برخی ویژگیهای کمی و کیفی علوفه کوشیا. پژوهش‌های زراعی ایران. 12(4): 613-620 ص.
    1. Abid, M., A. Qayyum, A.A. Dastai, and R. AbdulWajid. 2001. Effect of Salinity and SAR of Irrigation water on yield, Physiological growth parameters of Maiz (Zeamayes L.) and Preperties of the soil. J. Research (science), Bahaudin Zakariya University, Multan Pakistan. 12 (1): 26-330.
    2. Blokhina, O., E. Virolainen, and K.V. Fagestedt. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Annuals of Botany. 91: 179-194.
    3. Blum, A. 1988. Plant breeding for stress environments. CRC Press Inc., Boca Raton, Florida, USA. 233 p.
    4. Bohnert, H.J., D.E. Nelson, R.G. Jensen. 1995. Adaptation to environmental stresses. Plant Cell 7: 1099–1111.
    5. Bohnert, H.J., D.E. Nelson, and R.G. Jensen. 1999. Adaptations to environmental stresses. Plant Cell 7: 1099-1111.
    6. Bonales-Alatorre, E., I. Pottosin, L. Shabala, Z.H. Chen, F. Zeng, S.E. Jacobsen, and S. Shabala. 2013. Differential activity of plasma and vacuolar membrane transporters contributes to genotypic differences in salinity tolerance in a halophyte species, Chenopodium quinoa. International Journal of Molecular Sciences. 14(5): 9267-9285.
    7. Cocozza, C., C. Pulvento, A. Lavini, M. Riccardi, R. d'Andria, and R. Tognetti. 2013. Effects of Increasing Salinity Stress and Decreasing Water Availability on Ecophysiological Traits of Quinoa (Chenopodium quinoa Willd.) Grown in a Mediterranean‐Type Agroecosystem. Journal of agronomy and crop science. 199(4): 229-240.
    8. Eisa, S., S. Hussin, N. Geissler, and H.W. Koyro. 2012. Effect of NaCl salinity on water relations, photosynthesis and chemical composition of Quinoa (Chenopodium quinoa Willd.) as a potential cash crop halophyte. Australian Journal of Crop Science. 6(2):357.
    9. Flowers, T. J. and S. A. Flowers. 2005. Why does salinity pose such a different problem for plant breeders Agric. Water Management. 78: 15-24.
    10. Francois, L.E., E.V. Grieve, E.V. Mass and S.M. Leseh. 1994. Time of salt stress affects growth and yield components of irrigated wheat. Agronomy Journal. 86:100-107.
    11. Gehlot, H.S., A. Purohit, and N.S. Shekhawat. 2005. Metabolic changes and protein patterns associated with adaptation to salinity in Sesamum indicum cultivars. Journal of Cell and Molecular Biology. 4: 31-39.
    12. Guo, F., and Z.C. Tang. 1999. Reduced Na+ and K+ permeability of K+ channel in plasma membrane isolated from roots of salt tolerant mutant of wheat. Chinese Science Bulletin. 44(9): 816-821.
    13. Idress, M., M. Naeem, M. Nasir Khan, T. Aftab, A. Masroor, and K.H. Moinuddin. 2011. Alleviation of salt stress in lemongrass by salicylic acid. Protoplasma. 10: 314-330.
    14. Ingram, J., and D. Bartels. 1996. The molecular basis of dehydration tolerance in plants. Annual review of plant biology. 47: 377-403.
    15. Jacobsen, S.E., A. Mujica, and C.R. Jensen. 2003. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Reviews International. 19(1-2: 99-109.
    16. Kerepesi, I., and H. Galiba, 2000. Osmotic and salt stressinduced alteration in soluble carbohydrate in wheat seedlings. Crop Science. 40(2): 482-487.
    17. Koyro, H.W., and S.S. Eisa.  2008. Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Plant and Soil. 302(1-2): 79-90.
    18. Koyro, H.W., H. Lieth, and S.S. Eisa.  2008. Salt tolerance of chenopodium quinoa wild. Grains of the Andes: Influence of salinity on biomass production, yield, and composition of reziaves in the seeds, water and solute relations. Tasks for Vegetation Sciences. 43: 133-145.
    19. Mass, E.V., and C.M. Griev. 1990. Spike and leaf development in salt stress of wheat. Crop Science. 30: 1309-1313.
    20. Meloni, D.A., M. R. Gulotta, C.A. Martínez, and M.A. Oliva. 2004. The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis Alba. Plant Physiology. 16(1): 39-46.
    21. Munns, R. 1993. Physiological processes limiting plant growth in saline soil: some dogmas and hypotheses. Plant Cell Environment. 16: 15-24.
    22. Munns, R., and M. Tester, 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology. 59: 651-681.
    23. NabizadehMarvdust, M.R., M. Kafi, M.H. Rashed-MoHasel. 2003. Effect of salinity on growth, yield, collection of mineral and percentage of green cumin essence. Journal of Agricultural Sciences. 138: 53-60.
    24. Razzaghi, F., F. Plauborg, S.E. Jacobsen, C.R. Jensen, and M.N. Andersen. 2012. Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa. Agricultural water management. 109: 20-29.
    25. Ruiz-Carrasco, K., F. Antognoni, A.K. Coulibaly, S. Lizardi, A. Covarrubias, E.A. Martı´nez, M.A. Molina-Montenegro, S. Biondi, and A. Zurita-Silva. 2011. Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Wild.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiology and Biochemistry. 49: 1333–1341.
    26. Sanchez, F.J., M. Manzanares, E.F. De Andres, J.L. Tenorio, and L. Ayerbe. 1998. Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Research. 59: 225-235.
    27. Smirnoff, N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New phytologist. 125(1): 27-58.