Document Type : Research Paper

Authors

1 Assistant Professor, Department of Water Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.

2 M.sc Student, university of kurdistan

Abstract

 
The wetted profile pattern is an important factor to consider when designing and managing a surface and subsurface drip irrigation systems. The knowledge of the pattern dimensions is imperative in choosing the suitable spacing between emitters and the correct distance between laterals. The experiments were carried out in a transparent plexiglass tank (0.5 *1.22 *3 m) using three different soil textures (sandy clay, sand clay loam, and sandy loam). The drippers were installed at 3 different soil depths (15, 30 and 45 cm). The emitter outflows were 2.4, 4 and 6 Lhr-1 with irrigation duration of 6 hr. In this study, using the data obtained from the laboratory experiments and conducting the nonlinear regression analysis using Microsoft Excel Solver tool 2010, an empirical model was developed to predict the horizontal distribution of the wetting front for different application times. The suggested model includes estimation of the wetted radius at the top and bottom of the emitter horizontal axis as a function of emitter discharge, saturated hydraulic conductivity, water application time, soil bulk density, emitter installation depth, initial soil moisture content, and the percentages of sand, silt, and clay in the soil. We pursued a similar procedure in developing empirical formulas for estimating the wetted radius at different soil depths (by optimizing the coefficients of Equations) to predict the full shape of the wetting pattern. The best performance of the model was related to the depth of zero (on the emitter positioning axis), where the values of RMSE, MAE,  and R2 were 2.15, 1.7 cm, 14.85 % and 0.92, respectively. The lowest performance of the model was related to the depth of 20 cm from the emitter, where values of  RMSE, MAE,  and R2 were 3.93, 3.26 cm, 37.55% and 0.75, respectively (R2 coefficient was significant at 5% level). The results of this research showed that the suggested model predicted the full shape of wetting pattern with acceptable accuracy. Considering these models in designing subsurface drip irrigation systems could improve system performance.

Keywords

  1. اسماعیلی، ا.، سلطانی محمدی، ا. و برومند­نسب، س. 1394. بررسی ابعاد پیاز رطوبتی آبیاری قطر­ه­ای نواری در اراضی شیب­دار. مجله علمی کشاورزی، علوم و مهندسی آبیاری، جلد 39، شماره 1، صفحات 190- 181.
  2. تمجید، م.، بیگلویی، م.ح.، خالدبان، م.ر.، مریدنژاد، ع. و محمدی، ع. 1392. مقایسه رگرسیون خطی و شبکه­های عصبی در برآورد ابعاد پیاز رطوبتی در اراضی شیب­دار. نشریه دانش آب و خاک، جلد 24، شماره 4، صفحات 246- 237.
  3. علیزاده، ا. ۱۳۸۵. اصول طراحی سیستم­های آبیاری تحت فشار. جلد دوم، چاپ پنجم، انتشارات آستان قدس رضوی، 367 صفحه.
  4. کریمی، ب.، سهرابی،ت.، میرزائی،ف. و آبابایی، ب .1394.استخراج روابط تخمین سرعت پیشروی جبهه حرکت آب در سیستم­های آبیاری قطره­ای سطحی و زیرسطحی با کمک آنالیز ابعادی. نشریه دانش آب و خاک ، جلد 25 ، شماره 1، صفحات 101 تا 112.
  5. نوروزیان، ز.، صدرالدینی، ع.ا.، ناظمی، ا.ح. و دلیرحسن نیا، ر. 1395. بررسی تجربی و عددی توزیع رطوبت خاک در آبیاری قطره­ای زیرسطحی در خاک­های لایه­ای و شیب­دار. نشریه دانش آب و خاک،  جلد 26،  شماره 4،  بخش 1، صفحات 27- 13.
  6. Al-Ogaidi, A.A.M., Wayayok, A., Rowshona, M.K., and Abdullah, A.F. 2016. Wetting patterns estimation under drip irrigation systems using unenhanced empirical model. J. Agric. Water Mang. 176: 203-213.Arbat, G., Puig-Bargués, J., Duran-Ros, M., Barragán, J., and Ramírez de Cartagena, F. 2013­. Drip-Irriwater: Computer software to simulate soil wetting patterns under surface drip irrigation. Comput. Electron. Agric. 98: 183–192. 
  7. Cook, F.J., Thorburn, P.J., Fitch, P., Charlesworth, P.B., and Bristow, K.L. 2006. Modeling trickle irrigation: comparison of analytical and numerical models for estimation of wetting front position with time. Environ Model Software, 21: 1353–1359.
  8. Malek, K., and Peters, R.T. 2011. Wetting pattern models for drip irrigation: new empirical model. J. Irrig. Drain. Eng. 137: 530–536.
  9. Philip, J.R. and Knight, J.H. 1997. Steady infiltration flows with sloping boundaries. J. Water Res. Research. 33(8): 1833-1841.
  10. Revol, P.H., Clothier, B.E., Vachaud, G., and Thony, J.L. 1991. Predicting the field characteristics of trickle irrigation. J. Soil Tech. 4: 125-134.
  11. Samadianfard, S., Sadraddini, A.A., Nazemi, A.H., Provenzano, G. and Kisi, O. 2012. Estimating soil wetting patterns for drip irrigation using genetic programming. Spanish J. Agric. Res. 10: 1155–1166.
  12. Tarek, K. Zin El-Abedin., Mohamed, A. Mattar. And Alazba, A. A. 2015. Soil wetting pattern from subsurface drip irrigation as affected by application Of A polyacrylamide Layer. Irrig. And Drain. 64: 609–618.