Optimizing Irrigation Water Depth and Leaching Based on Different Water Management and Salinity Treatments Using AquaCrop Model

Document Type : Research Paper

Authors

1 Graduated Ph.D of Water Engineering department, Ferdowsi University of Mashhad

2 Professor, Water Engineering Department, Ferdowsi University of Mashhad.

Abstract

Considering limitations of agricultural productions in arid and semi-arid regions, optimization of irrigation depth and leaching is very important. In this study, calibrated and validated AquaCrop model was used in order to optimize irrigation water depth and leaching for two varieties of winter wheat (Ghods and Roshan) in Birjand region and one variety of wheat (spring Roshan) in Mashhad region. For winter wheat, irrigation treatments included 125%, 100%, 75% and 50% of water requirement and water salinities of 1.4, 4.5, and 9.6 dS/m for winter wheat. For spring wheat, irrigation treatments consisted of 100%, 90%, 65%, and 40% of water requirement and water salinities of 0.5, 0.9, 5.25, 8.6, and 10 dS/m. The coding written in Matlab program was linked to the AquaCrop in order to achieve the optimized values of irrigation and leaching in the land constraint conditions. The optimization results showed that net profit for the best irrigation and leaching management at all salinity levels and different wheat varieties, except for salinity levels of 8.6 and 10 dS/m in the spring Roshan variety and level of 9.6 dS/m in the winter Roshan variety, was more than the current management in field conditions. The increases in profits in optimal management compared to the current management for Ghods variety at the salinity levels of 1.4, 4.5, and 9.6 dS/m were 51.4%, 78.9%, and 142.5%, respectively. For the same salinity levels for Roshan variety, the increments were 42.7%, 20.8% and -0.3%, respectively. The increase in profits in optimal management compared to the current management for the spring Roshan variety at the salinity levels of 0.5, 0.9, 5.25, 8.6 and 10 dS/m, were 5%, 13.2%, 34.3%, -27.7%, and -51.4%, respectively. In general, the results show that in the regions where drainage problem due to irrigation water is an important environmental problem and causes dissatisfaction among the downstream farmers, applying less water and accepting negligible decrease in the benefits (minimum 0 and maximum 29%) could resolve the problem.

Keywords


  1. آقاخانی، ع. م، فیضی. م، صلحی. و ر، اعتدالی. ۱۳۹۲. شوری‌زدایی آب برای کشاورزی: ضرورت، اهمیت و محدودیت­ها. نشریه مدیریت اراضی. دوره ۱، شماره ۱. ص ۳۱-۱۷.
  2. اکبری، م. ۱۳۸۳. بهبود مدیریت آبیاری مزارع با استفاده از تلفیق اطلاعات ماهواره­ای، مزرعه­ای و مدل شبیه­سازی SWAP، رساله دوره دکتری، دانشگاه تربیت مدرس.
  3. حق­وردی، ا. ۱۳۹۰. ارائه تابع تولید شوری-آب-محصول برای گندم بهاره با استفاده از روش رویه پاسخ. پایان­نامه دوره دکتری آبیاری و زهکشی، دانشکده کشاورزی، دانشگاه فردوسی مشهد.
  4. خواجه روشنایی، ن. ک، دانشور. و غ، محتشمی برزادران. ۱۳۸۹. تعیین ارزش اقتصادی آب در روش تابع تولید، با به‌کارگیری مدل­های کلاسیک و آنتروپی (مطالعه موردی: محصول گندم در شهرستان مشهد). نشریه اقتصاد و توسعه کشاورزی. دوره ۲۴، شماره۱. ص ۱۱۹-۱۱۳.
  5. سپاسخواه، ع. ع، توکلی. و ف، موسوی. ۱۳۸۵. اصول و کاربرد کم­آبیاری. کمیته ملی آبیاری و زهکشی ایران، ۲۸۸ صفحه.
  6. شهیدی، ع. ۱۳۸۷. اثر برهم­کنش کم­آبیاری و شوری بر عملکرد و اجزاء عملکرد ارقام گندم با تعیین تابع تولید آب-شوری در منطقه بیرجند. پایان‌نامه دوره دکتری آبیاری و زهکشی، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز.
  7. علیزاده، ا. ۱۳۸۳. رابطه آب و خاک و گیاه. دانشگاه امام رضا. چاپ چهارم.
  8. محمدی، م.۱۳۹۴. بهینه­سازی آبشویی تحت سناریوهای مختلف مدیریت آبیاری با آب‌شور و لب­شور به‌منظور دست‌یابی به حداکثر سود خالص و حداقل آب آبشویی (مطالعه موردی: گندم زمستانه و بهاره). پایان‌نامه دوره دکتری آبیاری و زهکشی، دانشکده کشاورزی، دانشگاه فردوسی مشهد.
  9. محمدی، م. ک، داوری. ب، قهرمان. ح، انصاری. و ا، حق­وردی. ۱۳۹۴. واسنجی و صحت­سنجی مدل AquaCrop برای شبیه­سازی عملکرد گندم بهاره تحت تنش همزمان شوری و خشکی. نشریه پژوهش آب در کشاورزی. شماره ۲۹، دوره ۳. ص ۲۹۵-۲۷۷.
  10. محمدی، م. ب، قهرمان. ک، داوری. ح، انصاری. و ع، شهیدی. ۱۳۹۴. اعتبار سنجی مدل AquaCrop به‌منظور شبیه­سازی عملکرد و کارایی مصرف آب گندم زمستانه تحت شرایط همزمان تنش شوری و خشکی. نشریه آب‌وخاک. شماره ۲۹، دوره ۱. ص ۸۴-۶۷.
  11. Dominguez, A., E., Lopez-mata, A., De Juna, a., Artigao, and J. Tarjuelo. 2008. Deficit irrigation under water stress and salinity conditions the use of MOPECO model. Brazil, International Conference of agricultural Engineering XXXVII Congresso Brasileiro de Engenharia Agricola.
  12. Fereres, E., and M.A. Soriano. 2007. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 58, 147–159.
  13. García-Vila, M., and E. Fereres. 2012. Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level. European Journal of Agronomy, 36:21– 31.
  14. García-Vila, M., E., Fereres, L., Mateos, F., Orgaz, and P. Steduto. 2009. Deficit irrigation optimization of cotton with AquaCrop. Agron.  J. 101:477–487.
  15. Geerts, S., D., Raes, and M. Garcia. 2010. Using AquaCrop to derive deficit irrigation schedules. Agricultural Water Management, 98:213–216.
  16. Kijne, J.W., R., Barker, and D. Molden. 2003. Improving water productivity in agriculture: editor’s overview. In: Kijne, J.W., Barker, R.M.D. (Eds.), Water productivity in agriculture: limits and opportunities for improvement. International Water Management Institute, Colombo, Sri Lanka, p. xi–xix.
  17. Kumar, P., A., Sarangi, D.K., Singh, and SS. Parihar. 2014. Evaluation of AquaCrop model in predicting wheat yield and productivity under irrigated saline regimes. Irrigation and Drainage, 63: 474–487.
  18. Kuo, S.F., B.J., Lin, and H.J. Shieh. 2006. Estimation irrigation water requirements with derived crop coefficients for upland and paddy crops in ChiaNan Irrigation Association, Taiwan. Agricultural Water Management, 82:433-451.
  19. Memariani, A., A., Amini, and A. Alinezhad. 2009. Sensitivity analysis of simple additive weighting method (SAW): The results of change in the weight of one attribute on the final ranking of alternatives. Journal of Industrial Engineering, 4: 13-18.
  20. Molden, D. 2003. A water-productivity framework for understanding and action. In: Kijne, J.W., Barker, R., Molden, D. (Eds.), Water Productivity in Agriculture: Limits and Opportunities for Improvement. International Water Management Institute, Colombo, Sri Lanka, pp. 1–18.
  21. Podvezko, V. 2011. The comparative analysis of MCDA methods SAW and COPRAS. Inzinerine Ekonomika-Engineering Economics. 22 (2): 134-146.
  22. Raes, D., S., Geerts, E., Kipkorir, J., Wellens, and A. Sahli. 2006. Simulation of yield decline as a result of water stress with a robust soil water balance model. Agric. Water ManageMent, 81, 335–357.
  23. Raes, D., P., Steduto, T.C., Hsiao, and E. Fereres. 2009. AquaCrop-The FAO crop model for predicting yield response to water: II. Main algorithms and software description. Agron. J. 101:438–447.
  24. Salemi, H., M.A., Mohd Soom, T.S., Lee, S.F., Mousavi, A., Ganji, and M. KamilYusoff. 2011. Application of AquaCrop model in deficit irrigation management of Winter wheat in arid region. African Journal of Agricultural Research, 610: 2204-2215.
  25. Shamsnia, S. A., and N. Pirmoradian. 2013. Simulation of Rainfed Wheat Yield Response to Climatic Fluctuations Using AquaCrop Model (Case Study: Shiraz Region in Southern of Iran). International Journal of Engineering Science Invention, 2(4):51-56.
  26. Singh, A., S., Saha, and S. Mondal. 2013. Modelling irrigated wheat production using the FAO Aquacrop model in west Bengal, India, for sustainable agriculture. Irrigation and Drainage, 62:50–56.
  27. Singh, R. 2004. Simulation on direct and cyclic use of saline waters for sustaining Cotton-Wheat in a semi-arid area of north-west India. Agricultural Water Management, 66: 153-162.
  28. Steduto, P., T.C., Hsiao, D., Raes, and E. Fereres. 2009. AquaCrop-The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron. J. 101:426–437.
  29. Van Dam, J.C., P., Groenendijk, R.F.A., Hendriks, and J.G. Kroes. 2008. Advances of modeling water flow in variably saturated soils with SWAP. Vadose Zone Journal, 7:640-653.