Yield and Water Productivity of Wheat in Cotton-Wheat Rotation under Different Tillage and Crop Residue Managements

Document Type : Research Paper

Authors

Assistant Professor of Agricultural Engineering Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran.

Abstract

Effects of different irrigation levels on yield, water consumption, water use efficiency, and agronomic characteristics of cotton-wheat crop rotation were examined in the temperate zone of Khorasan Razavi. The study was conducted in Gonabad Research Station, using split-split plots based on randomized complete block design with three replications, in 2015-2016. Three tillage methods (no-till, conventional tillage, and reduced tillage) were in the main plots, three residue managements (without residue, 30% of the residues and 60% residue) in sub plots, and three levels of irrigation water (50%, 75% and 100 percent of the water required according to the National Water Document) were in sub-sub plots. Parsi wheat cultivar was used for cultivation. The results showed that the highest (non-significant) grain yield of wheat was obtained from no-tillage and without residue treatment. It was determined that no tillage and direct cultivation resulted in increased wheat grain yield and could be recommended economically, since it would reduce production costs. However, keeping or removing plant residues did not have a significant effect on yield, although the positive effects of plant residues on the improvement of soil properties and, consequently, on the yield of crops in the medium to long term are evident. The highest wheat yield (6249 kg/ha) was obtained from no-tillage with 30% residue and 100% of the water requirement. The highest water use efficiency of wheat (1.57 kg/m3) was obtained in no-tillage, without residue and 50% of the water requirement. The highest yield of wheat was recorded in the full irrigation (100%) treatment and was significantly different from other irrigation treatments (75%). By applying 50% of the water requirement, wheat yield decreased by 36.3% and by applying 75% of the water requirement wheat yield dropped by 31.5%. As a result, it is possible to save water consumed by wheat under a conservation agriculture system because water productivity increased in comparison with the conventional agricultural system.
 
 

Keywords


  1. اسکندری، ا. و همت، ع. 1382. اثر زیرشکنی بر حفظ و ذخیره رطوبت خاک و عملکرد محصول گندم دیم. مجله تحقیقات مهندسی کشاورزی، 4 (18): 1-14.
  2. اسکندری، ا. 1381. مقایسه روش­های مختلف خاک‌ورزی بر روی عملکرد گندم دیم بعد از برداشت نخود. مجله تحقیقات مهندسی کشاورزی، 3 (11): 57- 73.
  3. امانی، ص.، محمد زمانی، د. و محمدی، ا. 1395. بررسی اثر روشهای خاکورزی حفاظتی بر روی خواص فیزیکی و مکانیکی خاک در کشت گندم در منطقه خنداب استان مرکزی. مجله مهندسی زیست سامانه، 5 (2): 59-82.
  4. امینی، ع.، رجایی، م. و فارسی نژاد، ک. 1393. تاثیر روش های مختلف خاک­ورزی و مدیریت بقایای گیاهی بر عملکرد و اجزای عملکرد گندم. مجله اکوفیزیولوژی گیاهی سال ششم، شماره شانزدهم، ص. 27-38.
  5. تاکی، ا. و اسدی، ا. 1388. خاک‌ورزی حفاظتی در مناطق خشک و لزوم آن در کشاورزی پایدار. نشریه ترویجی، شورای انتشارات مدیریت هماهنگی ترویج کشاورزی اصفهان، شماره نشریه 107/5 .
  6. روزبه، م. 1378. ارزیابی و مقایسه میزان انرژی مورد نیاز روش‌های مختلف خاک‌ورزی. پایان‏نامه کارشناسی ارشد. دانشگاه شهید چمران اهواز، دانشکده کشاورزی. 77 صفحه.
  7. قدسی، م. 1391. مطالعه تاثیر روش های خاک­ورزی حفاظتی در مقایسه با شیوه متداول زراعی بر عملکرد و بهره­وری مصرف آب گندم در شهرستان چناران. گزارش نهایی موسسه اصلاح و تهیه نهال و بذر، کرج.
  8. کرباسی، ع.، خلیلیان، ص. و دانشور، م. 1379. بررسی ارزیابی اقتصادی سیستمهای آبیاری تحت فشار. مجموعه مقالات سومین کنفرانس اقتصاد کشاورزی ایران، ص. 77-53.
  9. موسوی ‌بوگر، ا.، جهانسوز، م.ر.، مهرور، م.ر. و حسینی پور، ر. 1392. بررسی سیستم های کشت بدون شخم، حداقل شخم و شخم متداول در ارقام گندم آبی. مجله علوم گیاهان زراعی ایران، 44 (3): 411-418.
  10. موسوی طلب، ف. و حبیبی اصل، ج. 1393. بررسی اثر روش های مختلف خاک­ورزی بر عملکرد و میزان مصرف آب در کشت گندم در منطقه خوزستان. مجله پژوهش و سازندگی (نشریه زراعت)، شماره 103 ، ص. 55-60.
  11. Abbasi, M. F., Asoodar, A., Sadatfar, M. 2010.Effect stem crusher and types of tillage on soil physical properties after harvest. Journal of Agricultural Engineering, Soil Science and Agricultural Machinery, 33(2): 25-38.
  12. Botta, G.F.,  Becerra, A.T. and Melcon, F.B. 2009. Seedbed compaction produced by traffic on four tillage regimes in the rolling Pampas of Argentina. Soil and Tillage Research, 105 (1): 128-134.
  13. Cavalaris, C. K., and Gemtos, T. A. 2002. Evaluation of four conservation tillage methods in the sugar beet crop. Agricultural Engineering International: The CIGR Journal of Scientific Research and Development. 6: 1-24.
  14. De Vita, P., Di Paolo, E., Fecondo, G., Di Fonzo, N. and Pisante, M. 2007. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil & Tillage Research, 92: 69–78.
  15. Erenstein, O. and Laxmi, V. 2008. Zero tillage impacts in India’s rice–wheat systems: A review. Soil & Tillage Research, 100, 1–14.
  16. Freebairn, D.M., Ward, L.D., Clarke, A.L. and Smith, G.D. 1986. Research and development of reduced tillage systems for vertisols in Queensland, Australia. Soil and Tillage Research, 8, 211-229.
  17. Guerif, J., Richard G., Durr C., Machet J.M., Recous S., Roger-Estrade J. 2001. A review of tillage effects on crop residue management, seed bed conditions and seedling establishment. Soil and Tillage Reseach, 61:13-32.
  18. Jat, M.L., Gathala, M.K., Ladha, J.K., Saharawat, Y.S., Jat, A.S., Kumar, V., Sharma, S.K., Kuma, V. and Gupta, R. 2009. Evaluation of precision land leveling and double zero-till systems in the rice–wheat rotation: Water use, productivity, profitability and soil physical properties. Soil and Tillage Research, 105 (1): 112-121.
  19. Kaspar, T.C., Erbach D.C. and  Cruse R.M. 1990. Corn response to seed-row residue removal. Soil Sci. Soc. Am. J. 54:1112-1117.
  20. Liu, S., Zhang, H.,  Dai, Q., Huo Xu, Z.K., and Ruan, H. 2005. Effects of no-tillage plus inter-planting and remaining straw on the field on cropland eco-environment and wheat growth. Ying Yong Sheng Tai Xue Bao, 16(2), 393-396.
  21. Merrill, S.D., Black, A.L., and Bauer, A. 1996. Conservation Tillage Affects Root Growth of Dryland Spring Wheat under Drought. Soil Science Society of America journal, 60(2), 575-583.
  22. Montgomery, D.R. 2007. Soil erosion and agricultural sustainability. P. Natl. Acad. Sci. USA. 104: 13268-13272.
  23. Rashidi, Z., Zare, M. J., Rejali, F., and Ashraf mehrab, A. 1390. Effect of soil tillage and integrated chemical  fertilizer and biofertilizer on quantity and quality yield of bread wheat and soil biological activity under dry land farming. Electronic Journal Crop Plants Produce  4 (2):189-206.
  24. Safari, A., Asoudarghasemi, M., Ghaseminejad, M., and Ebdali Mashadi, A. 2013. Effects of residue management, different conservation tillage and seeding on soil physical properties and wheat grain yield. Journal of Sustainable Agriculture and Production Science 23 (2): 49-59.
  25. Tursunov, M. 2009. Potential of conservation agriculture for irrigated cotton and winter wheat production in Khorezm, Aral Sea Basin, Tashkent, Uzbekistan. 94 pages. http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert.
  26. Ulger, P., Arin, S., and Kayioglu, B. 1993. Effect of different tillage methods on sunflower and some soil properties and energy consumption of these tillage methods. AMA 24 (3): 59-62.