Effect of Salinity Stress on Some Biochemical Characteristics Four Genotypes of Almond (Prunus dulcis)

Document Type : Research Paper

Authors

1 Assistant Professor, National Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran

2 Associate Professor, Temperate Fruits Research Center, Horticultural Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.

3 Associate Professor, Horticultural Department, College of Agriculture, University of Guilan, Rasht, Iran.

Abstract

Scion-rootstock combination and level of salinity affect on the biochemical characteristics of almond cultivars. To evaluate the effect of salinity stress on the biochemical reactions of almond cultivars and genotypes, a factorial experiment was carried out based on completely randomized design (CRD). Treatments included two factors: Factor A: genotypes in four levels (‘Shokofeh’,‘Sahand’ cultivars, and ‘13-40’ genotype budded on GF677 rootstock, and GF677 (without budding)), and Factor B: irrigation water salinity in five levels (0.5, 2.5, 4.9, 7.3 and 9.8 dS/m) .Total phenolic, antioxidant capacity, soluble carbohydrate, non-soluble carbohydrate, proline, total soluble proteins, hydrogen peroxide, malondialdehyde, other aldehydes, enzymes activity of catalase, ghayacol peroxidase and ascorbat peroxidase were measured at the end of the experiment. Results showed that, in all genotypes, with increasing salinity level (up to 9.8 dS/m) the content of hydrogen peroxide, malondialdehyde and other aldehydes was increased. Also, the content of total phenolics, antioxidant capacity, soluble carbohydrate, proline, total soluble proteins, enzymes activity of catalase, ghayacol peroxidase and ascorbat peroxidase were higher at  the lower salinity levels (2.5 and 4.9 ds/m), but their contents were reduced in higher salinity levels. Overall, the highest content of soluble proteins, enzymes activity of catalase, ghayacol peroxidase and ascorbat peroxidase were recorded at salinity level of 7.3 dS/m, and the highest content of total phenolics, antioxidant capacity, soluble carbohydrate and prolin at salinity level 9.8 dS/m were observed in ‘Shokofeh’ cultivar. Also, at salinity levels of 7.3 and 9.8 dS/m, the lowest content of hydrogen peroxide, malondialdehyde, other aldehydes, and total non-soluble carbohydrate were observed in ‘Shokofeh’ cultivar. Finally, ’Shokofeh’ and ’Sahand’ budded on GF677 rootstock were recognized as the most tolerant and sensitive cultivars to salinity, respectively.

Keywords


  1. اورعی، م.،  ج. طباطبایی، ا. فلاحی، و ع. ایمانی. 1388. اثرات تنش شوری و پایه بر رشد، شدت فتوسنتز، غلظت عناصر غذایی و سدیم درخت بادام. علوم باغبانی ایران. 23 (2): 131-140.
  2. حیدری شریف آباد، ح. 1380. گیاه و شوری. موسسه تحقیقات جنگل­ها و مراتع. 76 صفحه.
  3. رهنمون، ح.، ف. شکاری، ج. دژم پور، و م.ب. خورشیدی. 1392. تأثیر سطوح مختلف شوری روی برخی تغییرات مورفولوژیکی و بیوشیمیایی بادام(Prunus dulcis Mill.) . به زراعی کشاورزی. 15 (2): 192-179.
  4. رهنمون، ح.، ع. قاسیموف نعمت، ف. شکاری، و ن. علی اصغرزاده. 1388. تاثیر تنش شوری روی برخی رفتارهای اکوفیزیولوژیکی نژادگان های گزینش شده بادام (.Prunus amygdalus B). علوم و فنون باغبانی ایران. 10 (2): 167-176.
  5. غلامی، م.، و م. راحمی. 1389. بررسی اثرات تنش شوری کلرید سدیم بر خصوصیات فیزیولوژیکی و مورفولوژیکی پایه رویشی هیبرید هلو- بادام ((GF677. مجله فناوری تولیدات گیاهی. 2 (1): 31-21.
  6. مومن پور، ع.، ع. ایمانی، د. بخشی، و ح. رضایی. 1393. ارزیابی تحمل به شوری در برخی از ژنوتیپ های بادام پیوند شده روی پایه GF677 بر اساس صفات مورفولوژیک و فلورسانس  کلروفیل. فرآیند و کارکرد گیاهی. 3 (10): 9-28.
  7. مومن پور، ع.، د. بخشی، ع. ایمانی، و ح. رضایی. 1393. اثر تنش شوری بر غلظت عناصر غذایی در رقم های بادام ’شکوفه‘، ’سهند‘ و ژنوتیپ’۴۰-۱۳‘ پیوند شده روی پایه GF677. مجله علوم باغبانی مشهد، 29 (2): 255-268.
  8. مومن پور، ع.، ع. ایمانی، د. بخشی، و ح. رضایی. 1394. ارزیابی خصوصیات رشدی و غلظت عناصر غذایی در چهار ژنوتیپ بادام پیوندشده روی پایه GF677 تحت تنش شوری. علوم باغبانی ایران. 64 (3):603-624.
    1. Ashraf, M., and P. J. C. Harri. 2003. Potential biochemical indicators of salinity tolerance in plants.  Plant Science. 166: 3-16.
    2. Bakhshi, D., and O. Arakawa. 2006. Effects of UV-B irradiation on phenolic compound accumulation and antioxidant activity in ‘Jonathan’ apple influenced by bagging, temperature and maturation. Journal of Food, Agriculture and Environment. 4(1): 75-79.  
    3. Bartles, D., and R. Sunka. 2005. Drought and salt tolerance in plants: a review. Plant Science. 24: 23-58. 
    4. Bates, LS., R.P. Waldren, and L.D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant and Soil Science. 39: 205-208.
    5. Beauchamp. C.O., and I. Fridovich. 1971. Superoxide dis­mutase: improved assays and an assay applicable to acry­lamide gels. Annual Review of Biochemistry. 44: 276–287.
    6. Bernstein, L., Brown, J.W. and Hayward, H.E. 1956. The influence of rootstock on growth and salt accumulation in stone-fruit trees and almonds. Proceedings of the American Society for Horticultural Science. 68: 86-95.
    7. Bradford, M. M. 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Annual Review of Biochemistry. 72: 248-254.
    8. Brown, J.W., Wadleigh, C.H. and Hayward, H.E. 1953. Foliar analysis of stone fruit and almond trees on saline substrates. Proceedings of the American Society for Horticultural Science. 61: 49-55.
    9. Cesarino, IA., P. Araújo, M JL. Sampaio, L. Paes, and P. Mazzafera. 2012. Enzymatic activity and proteomic profile of class III peroxidases during sugarcane stem development. Plant Physiological and Biochemistry. 55: 66-76.
    10. Chance, B., and AC. Maehly. 1955. Assay of catalases and peroxidase. In: Colowickand SP and Kaplan NO (Eds.), Methods in Enzymology. New York Academic Press, pp. 764-775.
    11. Du, G., F. Li, F. Ma, and D. Liang. 2009. Antioxidant capacity and the relationship with polyphenol and Vitamin C in Actinidia fruits. Food Chemistry. 113: 557–562.
    12. Erturk, U., N. Sivritepe, C. Yerlikaya, M. Bor, F. Ozdemir, and I. Turkan. 2007. Responses of the cherry rootstock to salinity in vitro. Biologia Plantarum. 51: 597-600.
    13. Heath, RL., and L. Packer. 1969. Photoperoxidation in isolated chloroplast, I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics. 125: 189-198.
    14. Kochert, G.)1987. Carbohydrate determination by the phenolsulfuric acid method. In Helebus Cambrige Univ. Press, Cambridge.
    15. Levitt, J. 1980. Responses of plants to environmental stresses: water, radiation, salt and other stresses. Vol. II. Academic Press, New York. Pp 581.
    16. Maas, E.V, and G.J, Hoffman. 1977. Crop salt tolerance: current assessment. Journal of Irrigation and Drainage Engineering. 103: 115- 134.                             
    17. Mousavi, A., H. Lessani, M.A. Babalar, R. Talaei, and E. Fallahi. 2008. Influence of salinity on chlorophyll, leaf water potential, total soluble sugars and mineral nutrients in two young olive plants. Journal of Plant Nutrition. 31(11):1906-1916.
    18. Munns, R., and M. Tester. 2008 Mechanisms of salinity tolerance. Annual Review of Plant Biology. 59: 651–681.
    19. Nakano, Y., and K. Asad. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell and Environment. 22: 867-880.
    20. Singleton, V. L., R. Orthofer, and R. Lamuela-Raventos. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means ofFolin-Ciocalteu reagent. Journal of Mythology and Enzymology. 299: 152–178.
    21. Sorkheh, K., B. Shiran, V. Rouhi, and M. Khodambashi. 2012. Salt stress induction of some key antioxidant enzymes and metabolites in eight Iranian wild almond species. Journal of Plant Physiology. 34: 203–213.
    22. Szczerba, M.W., D. T. Britto, and H. J. Kronzucker. 2009. K+ transport in plants: physiology and molecular biology. Plant Physiology. 166: 447-466.
    23. Szczerba, M.W., DT. Britto, KD. Balkos, and H. J. Kronzucker. 2008. NH4+-stimulated and -inhibited components of K+ transport in rice (Oryza sativa L.). Experimental Botany. 59: 3415–3423.
    24. Takeda, T., A. Yokota, and S. Shigeoka.1995. Resistance of photosynthesis to hydrogen peroxide in algae. Plant Cell Physiology. 36: 1089-1095.
    25. Velikova, V., I. Yordanov, and A. Edreva. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Science. 151: 59-66.
    26. Vogt, T. 2010. Phenyl propanoid biosynthesis. Molecular Plant. 3: 2–20.
    27. Zhang, J., and M.B. Kirkham. 1996. Enzymatic responses of the acrobat-glutathione cycle to drought in sorghum and sunflower. Plant Science. 113: 139-147.