Simulation of Soil Moisture between Two Drain Pipes in Paddy Fields by HYDRUS-2D Model

Document Type : Research Paper

Authors

1 Ph.D. Student, Department of Water Engineering/ Sari Agricultural Sciences and Natural Resources University, Sari - Iran

2 Associate Professor, Water Engineering Department, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.

3 Associate Professor, Water Engineering Department, Shahrekord University, Shahrekord, Iran.

Abstract

Evaluation of soil moisture transfer between two subsurface drains and water drainage from the roots is very important. In this regard, application of conservation of mass equations by HYDRUS-2D software, in addition to reducing costs, could speed up access to the results. In this study, a subsurface drainage systems with drain depth of 0.9 m, drain spacing of 30 m, and groundwater depth of 50 cm was studied during one growing season of canola in paddy fields located in Sari region. Soil profile was considered from the surface to a depth of two meters and six layers of soil were defined. Soil saturated hydraulic conductivity (K) for each of the 6 layers of the soil was calculated by Piezometric method and using Kirkham equation. The K values for the surface layer down to the layer at the depth of 2 m were, respectively, 0.8, 0.11, 0.29, 0.16, 0.38 and 0.083 m/day. Other input parameters of HYDRUS-2D model were measured every day including precipitation, water table depth, and soil moisture. Observed data and simulated water tables between the two drain pipes were compared and the model was calibrated in saturated period. The performance of the model was evaluated by statistical approaches considering root mean square error (RMSE), the coefficient of determination (R2), the average deviation (AD) percent error (PE) and the modeling efficiency (EF), which were 0.0214 cm3/cm3, 0.932, 0.0407 cm3/cm3, 0.079, and 0.525, respectively. The results showed that simulation was considerably satisfactory.
 

Keywords


  1. بای بوردی، م. 1378. اصول مهندسی زهکشی و بهسازی خاک. چاپ هشتم. انتشارات دانشگاه تهران. شماره ی انتشارات 1334، تهران. 641 ص.
  2. بای بوردی، م. 1372. فیزیک خاک. چاپ پنجم. انتشارات دانشگاه تهران. شماره ی انتشارات 1672، تهران. 671 ص.
  3. بشارت، س.، بهمنش، ج.، رضایی، ح. و ر.، دلیر حسن نیا . 1393. ارزیابی مدل HYDRUS در نفوذ آب به خاک با استفاده از اندازه­گیری­های آزمایشگاهی در لایسیمتر وزنی. نشریه پژوهش های حفاظت آب و خاک. جلد بیست و یکم، شماره پنجم، 1393. ص 297-306
  4. بی­نام. 1380. مدیریت کیفیت زه­آب­های کشاورزی زهکشی. گروه کار اثرات زیست محیطی طرح­های آبیاری و زهکشی. انتشارات کمیته ملی آبیاری و زهکشی ایران. شماره ی انتشارات 43. 180 ص.
  5. پذیرا،  ا،. 1387. زهکشی زیرزمینی در اراضی ساحلی. مجموعه مقالات پنجمین کارگاه فنی زهکشی و محیط زیست. ۱۶ آبان ۱۳۸۷ کمیته ملی آبیاری و زهکشی، تهران: 70-51.
  6. شاهنظری ع.، احمدی م ض.، آقاجانی ق.  و درزی ع.، (1389) گزارش نهایی طرح تحقیقات کاربردی ارزیابی عملکرد سیستم زهکشی زیرزمینی در اراضی شالیزاری تجهیز و نوسازی شده. دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری. 53 ص.
  7. عباسی ف (1386) فیزیک خاک پیشرفته. چاپ اول. انتشارات دانشگاه تهران. شماره ی انتشارات 2871، تهران. 250 ص.
  8. Abbasi, F., Jacques, D., Simunek, J., Feyen, J., and M.Th. van Genuchten. 2003. Inverse estimation of the soil hydraulic and solute transport parameters from transient field experiments: Heterogeneous soil. American Society of Association Executives, 46(4): 1097-1111.
  9. Ahmadi, M.Z. 1999. Use of piezometers to find the depth to impermeable layer in the design of drainage systems. Hydrological Sciences Journal. 44.1: 25-31.
  10. Akay, O., Fox, G.A, and J. Simunek. 2008. Numerical simulation of flow dynamics during macropores-subsurface drain interactions using Hydrus. Vadose Zone. 7 (3), 909–918.
  11. Darzi, A., Mirlatifi, M., Shahnazari, A., Ejlali, F., and M.H. Mahdian. 2012. Influence of surface and subsurface drainage on rice yield and its component in paddy fields. Water research in agriculture. 26(1): 61-71.
  12. Ebrahimian, H., and H. Noory. 2015. Modeling paddy field subsurface drainage using HYDRUS -2D. Paddy and Water Environment. 13(4): 477-485.
  13. Feddes, R.A., Kowalik, P.J., and H. Zaradny. 1978. Simulation of Field Water Use and Crop Yield. John Wiley & Sons, New York. 188 p.
  14. Filipovi, V., Kochem Mallmann, F.J., Coquet, Y., and J. Simunek. 2014. Numerical simulation of water flow in tile and mole drainage systems Agricultural Water Management 146: 105–114.
  15. Gardenas, A., Hopmans, J.W., Hanson, B.R., and J. Simunek. 2005. Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation. Agricultural Water Management. 74: 219– 42.
  16. Garg, K.K., Das, B.S., Safeeq, M., and P.B.S. Bhadoria. 2009. Measurement and modeling of soil water regime in a lowland paddy field showing preferential transport. Agricultural Water Management. 96: 1705–1714.
  17. Karandish, F., Darzi-Naftchali, A., and J. Šimůnek. 2017. Application of HYDRUS-2D for predicting the influence of subsurface drainage on soil water dynamics in a rainfed-canola cropping system. 13th International Drainage Workshop of ICID, Ahwaz, Iran.
  18. Legates, D.R., and G.J. McCabe. 1999. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research. 35: 233-241.
  19. Meshkat, M., Warner, R.C., and S.R. Workman. 1999. Modeling of evaporation reduction in drip irrigation system. Irrigation Drain Engineering .125(6): 315-323.
  20. Nash, J.E. and J.V. Sutcliffe. 1970. River flow forecasting thorough conceptual models, A discussion of principles. Hydrology. 10: 282-290.
  21. Ogino, Y., and S. Ota. 2007. The evolution of Japan’s rice field drainage and development of technology. Irrigation Drain. 56(1):69–80.
  22. Salehi, A.A., Navabian, M., Varaki, M.E., and N.  Pirmoradian. 2017.  Evaluation of HYDRUS-2D model to simulate the loss of nitrate in subsurface controlled drainage in a physical model scale of paddy fields. Paddy and Water Environment. 15(2): 433-442.
  23. Sander, T., and H.H. Gerke. 2009. Modelling field-data of preferential flow in paddy soil induced by earthworm burrows. Contaminant Hydrology. 104 (1–4), 126–136.
  24. Schmitz, G.H., Shutze, N., and U. Petersohn. 2002. New strategy for optimizing water application under trickle irrigation. Irrigation Drain engineering. 128(5): 287-297.
  25. Simunek, J., Senja, M., and M.Th., Van Ghenuchten. 1999. The HYDRUS-2D software package for simulating the two-dimensional movement of water, heat and multiple solutes in variably saturated media, version 2.0, IGWMC-TPS-70, Int. Groundwater Modeling Center, Colorado School of Mines, Golden, Co. 251 P.
  26. Simunek, J., van Genuchten, M., and M.Th. Sejna. 2008. Development and applications of the HYDRUS and STANMOD software packages, and related codes. Vadose Zone. 7: 587–600.
  27. Siyal, A.A., and TH. Skaggs. 2009. Measured and simulated soil wetting patterns under porous clay pipe sub-surface irrigation. Agricultural Water Management. 96: 893–904.
  28. Skaggs, T.H, Trout, J., Simunek, J., and A. Shouse. 2004. Comparison of HYDRUS-2D simulation of drip irrigation with experimental observations. Irrigation Drain Engineering. 130: 304-310
  29. Tabuchi, T. 2004. Improvement of paddy field drainage for mechanization. Paddy and Water Environment. 2(1):5–10.
  30. Wang, F.X., Kang, Y., and S.P. Liu. 2006. Effects of drip irrigation frequency on soil wetting pattern and potato growth in north China Plain. Agricultural Water Management. 79: 248–264.
  31. Wang, Y., Zhang, B., Lin, L., and H. Zepp. 2011. Agroforestry system reduces subsurface lateral flow and nitrate loss in Jiangxi Province, China. Agriculture, Ecosystems & Environment. 140 (3–4), 441–453.
  32. Willmott, C.J. 1982. Some comments on the evaluation of model performance. American Meteorological Society. 63(11): 1309–1313.
  33. Yousfi, A., mechergui, M., and H. Ritzema. 2014. A drain-spacing equation that takes the horizontal flow in the unsaturated zone above the groundwater table into account. Irrigation and Drainage. 63: 373–382.