Document Type : Research Paper

Authors

1 Department of Irrigation and Drainage Engineering, College of Aburaihan, University of Tehran.

2 Assistant Prof., Department of Irrigation and Drainage Engineering, Aburaihan Campus, University of Tehran.

3 Assistant Professor, Department of Irrigation Engineering, College of Aburaihan, University of Tehran

Abstract

Accurate identification of the potential hazards within the main Agricultural Water Conveyance and Delivery Systems (AWCDS) and their influences on the system failure could provide practical solutions for improving the operational performance of the systems. Therefore, risk analysis in AWCDS is inevitable to the system recognition and reliability endurance against the imminent hazards. Satisfactory operational of the AWCDS in irrigation networks is associated with delivery of adequate and equitable water to the entire off-takes located within the main irrigation canals. Accordingly, this study was conducted, for the first time, to present a unique framework to assess the adequacy, equity, and efficiency of water delivery risk analysis within AWCDS. To this end, the "fault tree" technique was employed for risk analysis of the disaster (hazardous event) which is called the "undesirability of supply and delivery". Consequently, factors leading to the occurrence of the failure, including natural hazards, human and operational threats as well, are recognized and formed the basic and middle events in the “fault tree" structure. The designed "fault three" was tested on the West Dez main irrigation canal, as the case study of the research. By interviewing the manager, local authorities, ditch-riders, and personnel of the Dez irrigation district, a set of questionnaires were filled up. According to the obtained information, failure probabilities of the basic events were gathered in the form of linguistic terms.  Later, the assembled fault tree was analyzed and, as a result, the failure probability of the secondary events and the top event was determined. Failure likelihood of the top event was calculated at about 30%. Consequently, due to this high failure likelihood, basic events were ranked based on their share in the occurrence of the relevant secondary events as well as the top event. The five most important events were "failure to fund maintenance process", "lack of operation flexibility", "non-homogeneous operation system", "inactivity of cultural and training centers of the province" and "inaccurate operation of the intakes". The Birnbaum index of these events varied from 0.055 to 0.097. Ranking of the events affecting the adequacy, equity, and efficiency was performed, with similar results.

Keywords

  1. اصفهانی، ح. 1388، ارزیابی ریسک با روش تحلیل درخت خطا. انتشارات کالج برتر، چاپ اول، تهران، ایران
  2. بادزهر، ع. ع. 1379، تهیه مدل کامپیوتری ارزیابی عملکرد شبکه های آبیاری با استفاده از تلفیق روش کلاسیک و ارزیابی سریع(مطالعه موردی شبکه آبیاری قزوین)، پایان نامه دکتری، دانشکده کشاورزی دانشگاه تربیت مدرس
  3. خرمی، ج. 1382، ارزیابی عملکرد شبکه های آبیاری با استفاده از منطق فازی(مطالعه موردی: شبکه آبیاری مارون)، پایان نامه دوره کارشناسی ارشد، دانشکده کشاورزی دانشگاه تربیت مدرس
  4. صالحی طالشی، ا. 1378، ارزیابی عملکرد بهره‌برداری از شبکه‌های آبیاری به روش تحلیل پوششی داده‌ها (DEA)، پایان نامه کارشناسی ارشد، دانشکده کشاورزی دانشگاه تربیت مدرس
  5. کاوه­کار، ن. و پرورش ریزی، ع.، بهمن 1387، دسته­بندی مطالعات در بازسازی و بهسازی شبکه‌های آبیاری، دومین همایش ملی مدیریت شبکه­های آبیاری و زهکشی، دانشگاه شهید چمران اهواز.
  6. کریمی، م. حیدری، ن. یوسف گمرکچی، ا. 1387، بررسی مشکلات و موانع طرح انتقال مدیریت بهره‌برداری و نگهداری شبکه آبیاری قزوین به آب بران، دومین همایش ملی مدیریت شبکه­های آبیاری و زهکشی، دانشگاه شهید چمران اهواز.
  7. هادیگل، ف. 1395، ارزیابی خطرپذیری تصفیه خانه های آب با استفاده از مدل تحلیل درخت خطا با لحاظ عدم قطعیت‌ها، پایان نامه کارشناسی ارشد، دانشکده مهندسی عمران، دانشگاه تهران
  8. Bhadra, A., Bandyopadhyay, A., Singh, R. and Raghuwanshi, N.S., 2009. Integrated reservoir-based canal irrigation model. I: Description. Journal of irrigation and drainage engineering, 135(2), pp.149-157.
  9. Burt, C.M., 2011. Chairman of the Board, Irrigation Training and Research Center (ITRC). G. Marks, & E. Wilcox, Interviewers) San Luis Obispo, CA.
  10. Fares, H. and Zayed, T., 2010. Hierarchical fuzzy expert system for risk of failure of water mains. Journal of Pipeline Systems Engineering and Practice, 1(1), pp.53-62.
  11. Assessment, F.R., 2005. A How-To Guide to Mitigate Potential Terrorist Attacks Against Buildings. FEMA, 452, pp.3-6.
  12. Jian, H.U., Junying, C., Jiahong, L. and Dayong, Q., 2011. Risk identification of sudden water pollution on fuzzy fault tree in beibu-gulf economic zone. Procedia Environmental Sciences, 10, pp.2413-2419.
  13. Liang, G.S. and Wang, M.J.J., 1991. A fuzzy multi-criteria decision-making method for facility site selection. The International Journal of Production Research, 29(11), pp.2313-2330.
  14. Lindhe, A., Rosén, L., Norberg, T. and Bergstedt, O., 2009. Fault tree analysis for integrated and probabilistic risk analysis of drinking water systems. Water research, 43(6), pp.1641-1653.
  15. Marhavilas, P.K., Koulouriotis, D. and Gemeni, V., 2011. Risk analysis and assessment methodologies in the work sites: On a review, classification and comparative study of the scientific literature of the period 2000–2009. Journal of Loss Prevention in the Process Industries, 24(5), pp.477-523.
  16. Molden, D.J. and Gates, T.K., 1990. Performance measures for evaluation of irrigation-water-delivery systems. Journal of irrigation and drainage engineering, 116(6), pp.804-823.
  17. Pan, Z.J. and Tai, Y.C., 1988. Variance importance of system components by Monte Carlo. IEEE Transactions on Reliability, 37(4), pp.421-423.
  18. Sadiq, R., Kleiner, Y. and Rajani, B., 2007. Water quality failures in distribution networks—risk analysis using fuzzy logic and evidential reasoning. Risk analysis, 27(5), pp.1381-1394.
  19. Taheriyoun, M. and Moradinejad, S., 2015. Reliability analysis of a wastewater treatment plant using fault tree analysis and Monte Carlo simulation. Environmental monitoring and assessment, 187(1), p.4186.
  20. Yager, R.R., 1980. On a general class of fuzzy connectives. Fuzzy sets and Systems, 4(3), pp.235-242.