Assessment and Comparison of Two Sets of Pedotransfer Functions for Prediction of Some Points of Soil Moisture Characteristic Curve

Document Type : Research Paper

Authors

1 Young Researchers and Elite Club, Marvdasht Branch, Islamic Azad University, Marvdasht.

2 Assistant Prof., Water Science and Engineering Department, University of Jiroft.

3 Associate Prof., Soil Science Department, University of Shiraz.

Abstract

Soil moisture characteristics curve has a great importance in soil and water researches related to irrigation and drainage, soil conservation and solute transport. Since the direct measurement of this characteristic of the soil is time-consuming and expensive, the estimation of soil moisture curve points by using pedotransfer functions and reliable soil properties can save cost and time. The aim of the present study was assessment and comparison of Ostovari-Beigi (2013) and Ghanbarian-Millán (2010) pedotransfer functions, both of which were derived from the same database (UNSODA), for estimating 8 points of soil moisture curve. For this purpose, data of 119 soil samples of Europe (HYPRES database) were used. Results revealed that functions of Ostovari-Beigi (2013) have a good and similarity performance with the function of Ghanbarian-Millán (2010) at low suctions. At high suctions and near the permanent wilting point, Ostovari-Beigi (2013) functions, which used the fractal dimension of soil texture as an independent variable input, had a higher performance than Ghanbarian-Millán (2010) functions. Also, at some suctions, both Ostovari-Beigi (2013) and Ghanbarian-Millán (2010) functions did not have appropriate performances for estimation of the soil moisture. Generally, it can be concluded that the performance of Ostovari-Beigi (2013) functions (with one input parameter, the fractal dimension) in predicting the retention curve points is similar to, and sometimes better, than the functions of Ghanbarian-Milan (2010) (with a large number of input variables).
 

Keywords


  1. استواری، ی.، و بیگی، ح. 1392. پیشنهاد توابع انتقالی تخمین رطوبت خاک بر اساس بعد فرکتال بافت خاک. نشریه آب و خاک مشهد. 27(3):641-630.
  2. رمضانی، م.، قنبریان، ب.، و لیاقت، ع. 1390. برآورد توابع انتقالی به منظور تخمین منحنی مشخصه رطوبتی خاکهای شور و شور – سدیمی. مجله مدیریت آب و آبیاری. 1(1):110-99.
  3. شیرانی، ح.، و رفیع­نژاد، ن. 1390. برآورد برخی ویژگی­های دیریافت خاک­های استان کرمان بااستفاده از توابع انتقالی رگرسیونی و شبکه عصبی مصنوعی. مجله پژوهش­های خاک(علوم خاک وآب). 25(4):359-349.
  4. علیزاده ا. 1383. فیزیک خاک. انتشارات دانشگاه فردوسی مشهد. 439 صفحه.
  5. Abbasi, Y., B. Ghanbarian-Alavijeh., A.M. Liaghat., and M. Shorafa. 2011. Evaluation of pedotransfer functions for estimating soil water retention curve of saline and saline-alkali soils of Iran. Pedosphere. 21: 230–237.
  6. Ghanbarian-Alavijeh, B., and H. Millán. 2009.The relationship between surface fractal dimension and soil water content at permanent wilting point. Geoderma. 151: 224–23.
  7. Ghanbarian-Alavijeh, B., and H. Millan. 2010. Point pedotransfer functions for estimating soil water retention curve. International Agrophysics. 24: 243-251.
  8. Ghorbani-Dashtaki, Sh., and M. Homaee. 2004. Using geometric mean particle diameter to derive point and continuous pedotransfer functions. In: Whrle, N. and Scheurer, M. (Eds.) Euro Soil. September 4–12, 2004. Freiburg, Germany. 10: 1–10.
  9. Ghorbani-Dashtaki, Sh., M. Homaee., and H. Khodaverdiloo. 2011. Derivation and validation of pedotransfer functions for estimating soil water retention curve using a variety of soil data. Soil Use and Management. 26: 68–74.
  10. Khodaverdiloo, H., M. Homaee., M.T. Van Genuchten., and Sh. Ghorbani Dashtaki. 2011. Deriving and Validating Pedotransfer Functions for some Calcareous Soils. Journal of Hydrology. 399: 93-99.
  11. Mosaddeghi, M.R., and A.A. Mahboubi. 2011. Point pedotransfer functions for prediction of water retention of selected soil series in a semi-arid region of western Iran. Archives of Agronomy and Soil Science. 57: 327-342.
  12. Rawls, W.J. and Y.A. Pachepsky. 2002. Soil consistence and structure as predictors of Schaap MG, Leij FJ and Van Genuchten M Th. (2001) Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Hydrology. 251: 163-176.
  13. Schaap, M.G. 2004. Accuracy and uncertainty in PTF predictions. Chapter 3 In: Pachepsky, Y. and Rawls, W.J. (Eds). Developments in Soil Science. Volume 30. Development of pedotransfer functions in soil hydrology. Elsevier Science, Pp: 33-46.
  14.        Sepaskhah, A.R. and A. Tafteh. 2013. Pedotransfer function for estimation of soil-specific surface area using soil fractal dimension of improved particle-size distribution. Archives of Agronomy and Soil Science. 59: 93-103.
  15. Shirazi, M.A., and L. Boersma.1984. A unifying quantitative analysis of soil texture. Soil Science Society of America Journal. 48: 142–147.
  16. Tomasella, J., Y.A. Pachepsky., S. Crestana., and W.J. Rawls. 2003. Comparison of two techniques to develop pedotransfer functions for water retention. Soil Science Society of America Journal. 67: 1085-1092.