Development of Multi Objective Optimization Model for Wastewater and Groundwater Conjunctive Use in Varamin Irrigation Network

Document Type : Research Paper

Authors

Abstract

Due to extensive agricultural activities on the plains and the use of chemical fertilizers containing nitrogen, significant amount of this element enter the aquifer. On the other hand, effluent of wastewater treatment plants is used in irrigation and drainage networks as an alternative or supplementary source of surface water. Therefore, adoption of strategies for reducing and controlling the amount of nitrogen that enters the soil and aquifer is an important issue. The aim of this research was to develop a cropping pattern optimization model by quantitative-qualitative conjunctive use of unconventional surface water (wastewater) and groundwater. The three objectives of the model were maximizing profits from cropping pattern, reducing nitrogen leaching, and improving the rate of aquifer recharge. In order to integrate management of wastewater and irrigation water resources, the nonlinear three-objective optimization model was run for 7 scenarios (one-objective, two-objectives, and three-objectives) in water year 2012-2013, for Varamin irrigation network. The input data required for the model were collected in two ways: regional testing and obtaining information from various institutions.Solving one-objective model by first objective (first scenario: improving the network’s profit) showed the 49 percent improvement in the network’s net profit. The second objective (second scenario: reducing of fertilizer consumption) showed 95% reduction of fertilizer consumption, and the third objective (third scenario: improving the aquifer recharge) showed 120% improvement in the aquifer recharge, in comparison to the current situation. Solving the three-objective model (seventh scenario: combined objectives of improving network’s net profit, reducing fertilizer consumption, and improving the aquifer recharge) showed a reduction of 23% in cultivated area, 71% in nitrogen fertilizer consumption, and 13% in conjunctive withdrawals of wastewater and groundwater. Also, these reductions increase net benefit by 6%, aquifer recharge by 29%, and water productivity by 22%. Therefore, the seventh scenario was chosen as the best scenario. The results of this research could be adopted for optimum use of water resources, increasing farmers’ benefit, and decreasing nitrogen leaching in irrigation network projects. However, it is to be noted that, generally, use of wastewater for irrigation of food crops is not recommended.

Keywords


  1. داویجانی، م. ح.،م. ا. بنی حبیب. و س. ر.هاشمی. 1391. تدوین مدل تخصیص آب کشاورزی در شرایط پر آبی و خشکسالی بر مبنای حداکثرسازی راندمان اقتصادی (مطالعه موردی: حوضه کویر مرکزی).اولین همایش ملی مدیریت مدیریت آب در مزرعه، کرج، خرداد 9-10، 1391.
  2. ریاضی، ح. و ع. ا. منتظر.1387. ارزیابی استفاده تلفیقی از منابع آب سطحی و زیرزمینی شبکه آبیاری قزوین. سومین کنفرانس مدیریت منابع آب ایران، انجمن علوم و مهندسی منابع آب ایران، دانشگاه تبریز.
  3. شرکت مهندسان مشاور مهارآب عمران گستر،1393.گزارش مطالعات بازنگری و علاج بخشی شبکه آبیاری و زهکشی دشت ورامین.
  4. شرکت مهندسین مشاور یکم، 1392. مطالعات کیفی و آلودگی محدوده مطالعاتی ورامین. گزارش مدل ریاضی کمی- کیفی آبخوان آبرفتی ورامین.
  5. شرکت مهندسین مشاور یکم، 1392. مطالعات کیفی و آلودگی محدوده مطالعاتی ورامین. گزارش تجزیه و تحلیل داده­های آلودگی منابع  آب.
  6. علیزاده، ا.، ن.مجیدی.، م.قربانی. و ف. محمدیان. 1391. بهینه‌سازی الگوی کشت با هدف تعادل بخشی منابع آب زیرزمینی (مطالعه موردی دشت مشهد-چناران). آبیاری و زهکشی ایران. جلد 6. شماره 1.
  7. قاسمی، س.ع.،ش.دانش، ا. علیزاده. 1390. ارزیابی پتانسیل تأمین آب آبیاری و ارزش کودی پساب تصفیه­خانه­های فاضلاب شهری. آب و خاک. جلد 25. شماره 5. 1183-1172.

 

  1. Asano, T. 2007. Water reuse: issues, technologies, and applications. McGraw-Hill Professional.
  2. Das, B., A.Singh.,S.N.Panda., and H.Yasuda. 2015. Optimal land and water allocation policies for sustainable irrigated agriculture.Land Use Policy. 42:527-537.
  3. Fatta, D., and N. Kythreotou. 2005. Wastewater as valuable water resource - concerns, constraints and requirements related to reclamation, recycling and reuse. IWA International Conference on Water Economics, Statistics, and Finance, Greece.
  4. International Plant Nutrition Institute (IPNI). 2011. Nitrogen in soil organic matter, how much is released in your field, [Online]. Available at https://ipni.net. Norcross, Georgia 30092-2844 USA.
  5. Joodavi, A., M.Zare., andM. Mahootchi. 2015. Development and application of a stochastic optimization model for groundwater management: crop pattern and conjunctive use consideration. Springer-Verlag Berlin Heidelberg. 29:1637–1648.
  6. Justes, E., M.H.Jeuffroy., and B. Mary. 1997. The nitrogen requirement for major agricultural crops: wheat, barley and durum wheat. In Diagnosis of the nitrogen status in crops, G. Lemaire G (eds.), Springer-Verlag, Heidelberg, pp. 73-89.
  7. Justes, E., B. Mary., J. M. Meynard., J.M. Machet., and Thelier-Huches. 1994. Determination of a critical nitrogen dilution curve for winter wheat crops. Annals Botany. 74:397-407.
  8. Karamouz, M., B. Zahraie., R. Kerachian., and A. Eslami. 2010. Crop pattern and conjunctive use management: A Case Study.Irrigation and drainage. 59,2.
  9. Khare, D. 2006. Assessment of counjunctive use planning options: A case study of sapon irrigation command area of Indonesia.Journal of Hydrology. 328 (3), 764-777.
  10. Lemaire, G., M. Jeuffroy., andF. Gastal.2008. Diagnosis tool for plant and crop N status in vegetative stage theory and practices for crop N management.Europ. J. Agronomy 28: 614–624.
  11. Oron G., L. Gillerman., A. Bick., Y. Mnaor., N. Buriakovsky., and J. Hagin.2007. Advanced low quality waters treatment for unrestricted use purposes: Imminent challenges. Desalination, 213: 189-198.
  12. Pl´enet, D., andG. Lemaire. 2000. Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Plant Soil. 216, 65–82.
  13. Ramos, T.B., J. Šimu˚ nek.,M.C. Goncalves., J.C. Martins., A. Prazeres., andL.S. Pereira. 2012. Two-dimensional modeling of water and nitrogen fate from sweet sorghum irrigated with fresh and blended saline waters. Agric. Water Manag. 111, 87–104.
  14. Singh, A.  2014. Poor quality water utilization for agricultural production: An environmental perspective.Land Use Policy. 43, 259-262.
  15. Singh, A., andS.N. Panda. 2013. Optimization and simulation modeling for managing the problems of water resources. Water resources management. 27 (9), 3421-3431.
  16. Singh, A. 2012. Optimal allocation of resources for the maximization of net agricultural return. Irrigation and Drainage Engineering.138 (9), 830-836.
  17. Singh, D. K., C.S. Jaiswal.,K.S. Reddy., R.M. Singh., and D.M. Bhandarkar.2001. Optimal cropping pattern in a canal command area.Agricultural water management. Vol. 50. Issue 1. Pages 1-8.
  18. Tei, F., P. Benincasa., M. Guiducci. 2002. Critical nitrogen concentration in processing tomato. Eur J Agron. 18:45–55.
  19. WHO. 2006. Guidelines for drinking water quality. 3 ed. Geneva: WHO, 2006.p. 190-1.